table_parameterSummary | R Documentation |
Make summary table of the approximate local minimizers found by CGNM. If bootstrap analysis result is available, relative standard error (RSE: standard deviation/mean) will also be included in the table.
table_parameterSummary(
CGNM_result,
indicesToInclude = NA,
ParameterNames = NA,
ReparameterizationDef = NA
)
CGNM_result |
(required input) A list stores the computational result from Cluster_Gauss_Newton_method() function in CGNM package. |
indicesToInclude |
(default: NA) A vector of integers indices to include in the plot (if NA, use indices chosen by the acceptedIndices() function with default setting). |
ParameterNames |
(default: NA) A vector of strings the user can supply so that these names are used when making the plot. (Note if it set as NA or vector of incorrect length then the parameters are named as theta1, theta2, ... or as in ReparameterizationDef) |
ReparameterizationDef |
(default: NA) A vector of strings the user can supply definition of reparameterization where each string follows R syntax. |
A ggplot object including the violin plot, interquartile range and median, minimum and maximum.
model_analytic_function=function(x){
observation_time=c(0.1,0.2,0.4,0.6,1,2,3,6,12)
Dose=1000
F=1
ka=x[1]
V1=x[2]
CL_2=x[3]
t=observation_time
Cp=ka*F*Dose/(V1*(ka-CL_2/V1))*(exp(-CL_2/V1*t)-exp(-ka*t))
log10(Cp)
}
observation=log10(c(4.91, 8.65, 12.4, 18.7, 24.3, 24.5, 18.4, 4.66, 0.238))
CGNM_result=Cluster_Gauss_Newton_method(
nonlinearFunction=model_analytic_function,
targetVector = observation,
initial_lowerRange = rep(0.01,3), initial_upperRange = rep(100,3),
lowerBound=rep(0,3), ParameterNames = c("Ka","V1","CL"),
num_iter = 10, num_minimizersToFind = 100, saveLog = FALSE)
table_parameterSummary(CGNM_result)
table_parameterSummary(CGNM_result,
ReparameterizationDef=c("log10(Ka)","log10(V1)","log10(CL)"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.