View source: R/jags_picker_2stage.R
jags_picker_2stage | R Documentation |
jags.model
Object for a Given PriorSet up a Two-Stage Binary Outcome Misclassification jags.model
Object for a Given Prior
jags_picker_2stage(
prior,
sample_size,
dim_x,
dim_z,
dim_v,
n_cat,
Ystar,
Ytilde,
X,
Z,
V,
beta_prior_parameters,
gamma_prior_parameters,
delta_prior_parameters,
number_MCMC_chains,
model_file,
display_progress = TRUE
)
prior |
A character string specifying the prior distribution for the
|
sample_size |
An integer value specifying the number of observations in the sample. |
dim_x |
An integer specifying the number of columns of the design matrix of the true outcome mechanism, |
dim_z |
An integer specifying the number of columns of the design matrix of the first-stage observation mechanism, |
dim_v |
An integer specifying the number of columns of the design matrix of the second-stage observation mechanism, |
n_cat |
An integer specifying the number of categorical values that the true outcome, |
Ystar |
A numeric vector of indicator variables (1, 2) for the first-stage observed
outcome |
Ytilde |
A numeric vector of indicator variables (1, 2) for the second-stage observed
outcome |
X |
A numeric design matrix for the true outcome mechanism. |
Z |
A numeric design matrix for the first-stage observation mechanism. |
V |
A numeric design matrix for the second-stage observation mechanism. |
beta_prior_parameters |
A numeric list of prior distribution parameters
for the |
gamma_prior_parameters |
A numeric list of prior distribution parameters
for the |
delta_prior_parameters |
A numeric list of prior distribution parameters
for the |
number_MCMC_chains |
An integer specifying the number of MCMC chains to compute. |
model_file |
A .BUG file and used
for MCMC estimation with |
display_progress |
A logical value specifying whether messages should be
displayed during model compilation. The default is |
jags_picker
returns a jags.model
object for a two-stage binary
outcome misclassification model. The object includes the specified
prior distribution, model, number of chains, and data.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.