View source: R/naive_jags_picker_2stage.R
naive_jags_picker_2stage | R Documentation |
jags.model
Object for a Given PriorSet up a Naive Two-Stage Regression jags.model
Object for a Given Prior
naive_jags_picker_2stage(
prior,
sample_size,
dim_x,
dim_v,
n_cat,
Ystar,
Ytilde,
X,
V,
beta_prior_parameters,
delta_prior_parameters,
number_MCMC_chains,
naive_model_file,
display_progress = TRUE
)
prior |
character string specifying the prior distribution for the naive
|
sample_size |
An integer value specifying the number of observations in the sample. |
dim_x |
An integer specifying the number of columns of the design matrix of the first-stage outcome mechanism, |
dim_v |
An integer specifying the number of columns of the design matrix of the second-stage outcome mechanism, |
n_cat |
An integer specifying the number of categorical values that the observed outcomes can take. |
Ystar |
A numeric vector of indicator variables (1, 2) for the first-stage observed
outcome |
Ytilde |
A numeric vector of indicator variables (1, 2) for the second-stage observed
outcome |
X |
A numeric design matrix for the true outcome mechanism. |
V |
A numeric design matrix for the second-stage outcome mechanism. |
beta_prior_parameters |
A numeric list of prior distribution parameters
for the |
delta_prior_parameters |
A numeric list of prior distribution parameters
for the naive |
number_MCMC_chains |
An integer specifying the number of MCMC chains to compute. |
naive_model_file |
A .BUG file and used
for MCMC estimation with |
display_progress |
A logical value specifying whether messages should be
displayed during model compilation. The default is |
naive_jags_picker_2stage
returns a jags.model
object for a naive
two-stage regression model predicting the potentially misclassified Y*
from the predictor matrix x
and the potentially misclassified \tilde{Y} | Y^*
from the predictor matrix v
. The object includes the specified
prior distribution, model, number of chains, and data.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.