q_gamma_f | R Documentation |
Objective function of the form:
Q_{\gamma} = \sum_{i = 1}^N \Bigl[\sum_{j = 1}^2 \sum_{k = 1}^2 w_{ij} y^*_{ik} \text{log} \{ \pi^*_{ikj} \}\Bigr]
.
Used to obtain estimates of \gamma
parameters.
q_gamma_f(gamma_v, Z, obs_Y_matrix, w_mat, sample_size, n_cat)
gamma_v |
A numeric vector of regression parameters for the observed
outcome mechanism, |
Z |
A numeric design matrix. |
obs_Y_matrix |
A numeric matrix of indicator variables (0, 1) for the observed
outcome |
w_mat |
Matrix of E-step weights obtained from |
sample_size |
An integer value specifying the number of observations in the sample.
This value should be equal to the number of rows of the design matrix, |
n_cat |
The number of categorical values that the true outcome, |
q_beta_f
returns the negative value of the expected log-likelihood function,
Q_{\gamma} = \sum_{i = 1}^N \Bigl[\sum_{j = 1}^2 \sum_{k = 1}^2 w_{ij} y^*_{ik} \text{log} \{ \pi^*_{ikj} \}\Bigr]
,
at the provided inputs.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.