Description Usage Arguments Value Author(s) Examples
Returns a data frame to help the user choose the agreement.thresh
parameter for returnCore
. Each row shows how many samples (sample.count
) are at each agreement level (percent.agreement
), and what percent of the data would be removed for that agreement threshold (percent.remaining.if.removed
).
1 | examineCounts(mat.key)
|
mat.key |
A matrix of cluster assignments, where rows are items and columns are algorithms. The output of |
A 3 column table, showing the number of samples at each agreement level and the percent of data above that agreement level. The agreement level for a sample is the (highest) fraction of algorithms which agree on its cluster assignment.
Albert Chen and Timothy E Sweeney
Maintainer: Albert Chen acc2015@stanford.edu
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # reindexes cluster numbers to agree
clusters <- data.frame(
alg1=as.integer(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3)),
alg2=as.integer(c(1,1,1,1,1,3,3,3,3,3,2,2,2,2,2)),
alg3=as.integer(c(3,3,3,3,3,1,1,1,1,1,2,2,2,2,2))
)
mat.key <- clusterKeys(clusters)
mat.key # cluster indices are relabeled
examineCounts(mat.key)
core <- returnCore(mat.key, agreement.thresh=50) # find 'core' clusters
table(core) # the 'core' clusters
# some clusters assignments are undetermined
clusters <- data.frame(
alg1=as.integer(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,1,1,2,2,3,3)),
alg2=as.integer(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,1,2,2,3,3,1)),
alg3=as.integer(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,2,3,1,1,2,3))
)
mat.key <- clusterKeys(clusters)
mat.key # last six samples have conflicting assignments
examineCounts(mat.key)
core <- returnCore(mat.key, agreement.thresh=66) # need at least 2 of 3 algs to agree
table(core)
core <- returnCore(mat.key, agreement.thresh=99) # need all algs to agree
table(core)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.