LICbeta | R Documentation |
This function estimates the coefficients of a linear regression model using a design matrix 'X' and a response vector 'Y'. It implements an A-optimal and D-optimal design criteria to choose optimal subsets of observations.
LICbeta(X, Y, alpha, K, nk)
X |
The observation matrix (n x p) |
Y |
The response vector (n x 1) |
alpha |
The significance level for computing confidence intervals |
K |
The number of subsets |
nk |
The number of observations per subset |
A list containing:
E5 |
The LIC estimator for linear regression. |
Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11222-024-10471-z")}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.