| MSEver | R Documentation | 
Caculate the MSE values of the COR criterion for redundant data in simulation
MSEver(K = K, nk = nk, alpha = alpha, X = X, y = y)
| K | is the number of subsets | 
| nk | is the length of subsets | 
| alpha | is the significance level | 
| X | is the observation matrix | 
| y | is the response vector | 
A list containing:
| minE | The minimum value of the error variance estimator. | 
| Mcor | The MSE of the COR estimator. | 
| Mx | The MSE of the estimator based on the subset with the maximum M. | 
| MA | The MSE of the estimator based on the subset with the minimum W. | 
Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11222-024-10471-z")}
p=6;n=1000;K=2;nk=200;alpha=0.05;sigma=1
e=rnorm(n,0,sigma); beta=c(sort(c(runif(p,0,1))));
data=c(rnorm(n*p,5,10));X=matrix(data, ncol=p);
y=X%*%beta+e;
MSEver(K=K,nk=nk,alpha=alpha,X=X,y=y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.