beta_LW: Caculate the estimators of beta on the LEV-opt#'

View source: R/beta_LW.R

beta_LWR Documentation

Caculate the estimators of beta on the LEV-opt#'

Description

Caculate the estimators of beta on the LEV-opt#'

Usage

beta_LW(X, Y, K, nk)

Arguments

X

is the observation matrix

Y

is the response vector

K

is the number of subsets

nk

is the length of subsets

Value

A list containing:

betalev

The estimator of beta on the LEV-opt subset.

betam

The mean of the beta estimators across all K subsets.

AMSE

The Average Mean Squared Error (AMSE) for the estimator.

WMSE

The Weighted Mean Squared Error (WMSE) for the estimator.

MSElevb

The Mean Squared Error (MSE) of the LEV-opt estimator compared to the true beta.

MSEb

The Mean Squared Error (MSE) of the mean estimator (betam) compared to the true beta.

MSEyleva

The Mean Squared Error (MSE) of the LEV-opt estimator on the subset with the maximum hat value (Xleva).

MSEyleviy

The Mean Squared Error (MSE) of the LEV-opt estimator on the subset with the minimum hat value (Xlevi).

MSEW

The Mean Squared Error (MSE) of the weighted estimator (Wbeta) compared to the true beta.

MSEw

The Mean Squared Error (MSE) of the weighted estimator (wbeta) compared to the true beta.

References

Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11222-024-10471-z")}


COR documentation built on April 4, 2025, 5:13 a.m.

Related to beta_LW in COR...