reliabilityPlot | R Documentation |
Given probability scores probScore
and true probabilities trueProb
the methods plots one against the other using a selected boxing method
which groups scores and probabilities to show calibration of probabilities in given probability bands.
reliabilityPlot(probScore, trueProb, titleText="", boxing="equipotent", noBins=10, classValue = 1, printWeight=FALSE)
probScore |
A vector of predicted probabilities for a given class |
trueProb |
A vector of true probabilities for a given |
titleText |
The text of the graph title. |
boxing |
One of |
noBins |
The value of parameter depends on the parameter |
classValue |
A class value (factor) or an index of the class value (integer) for which reliability plot is made. |
printWeight |
A boolean specifying if box weights are to be printed. |
Depending on the specified boxing
the probability scores are grouped in one of three possible ways
"unique"
each unique probability score forms its own box.
"equidistant"
forms noBins
equally wide boxes.
"equipotent"
forms noBins
boxes with equal number of scores in each box.
The parameter trueProb
can represent either probabilities (in [0, 1] range, in most cases these will be 0s or 1s),
or the true class values from which the method will form 0 and 1 values corresponding to probabilities for class value classValue
.
A function returns a graph containing reliability plot on a current graphical device.
Marko Robnik-Sikonja
CORElearn
,
calibrate
.
# generate data consisting from 3 parts: # one part for training, one part for calibration, one part for testing train <-classDataGen(noInst=200) cal <-classDataGen(noInst=200) test <- classDataGen(noInst=200) # build random forests model with default parameters modelRF <- CoreModel(class~., train, model="rf") # prediction of calibration and test set predCal <- predict(modelRF, cal, rfPredictClass=FALSE) predTest <- predict(modelRF, test, rfPredictClass=FALSE) destroyModels(modelRF) # no longer needed, clean up # show reliability plot of uncalibrated test set class1<-1 par(mfrow=c(1,2)) reliabilityPlot(predTest$prob[,class1], test$class, titleText="Uncalibrated probabilities", classValue=class1) # calibrate for a chosen class1 and method using calibration set calibration <- calibrate(cal$class, predCal$prob[,class1], class1=1, method="isoReg", assumeProbabilities=TRUE) calTestProbs <- applyCalibration(predTest$prob[,class1], calibration) # display calibrated probabilities reliabilityPlot(calTestProbs, test$class, titleText="Calibrated probabilities", classValue=class1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.