Nothing
test_that("Extreme Rules Discarded Correctly", {
# Generate sample data
skip_on_cran()
set.seed(2021)
dataset_cont <- generate_cre_dataset(n = 500, rho = 0, n_rules = 2, p = 10,
effect_size = 0.5,
binary_outcome = FALSE)
y <- dataset_cont[["y"]]
z <- dataset_cont[["z"]]
X <- dataset_cont[["X"]]
ite_method <- "bart"
learner_ps <- "SL.xgboost"
learner_y <- NA
ntrees <- 100
node_size <- 20
max_nodes <- 5
max_depth <- 3
t_decay <- 0.025
t_ext <- 0.1
# Step 1: Split data
X <- as.matrix(X)
y <- as.matrix(y)
z <- as.matrix(z)
###### Discovery ######
# Step 2: Estimate ITE
ite <- estimate_ite(y, z, X, ite_method,
learner_ps = learner_ps,
learner_y = learner_y)
# Step 3: Generate rules list
initial_rules <- generate_rules(X, ite, ntrees, node_size,
max_nodes, max_depth)
rules_list <- filter_irrelevant_rules(initial_rules, X, ite, t_decay)
rules_matrix <- generate_rules_matrix(X, rules_list)
###### Run Tests ######
# Incorrect inputs
expect_error(filter_extreme_rules(rules_matrix = "test", rules_list, t_ext))
# Correct outputs
results <- filter_extreme_rules(rules_matrix, rules_list, t_ext)
expect_identical(class(results), c("matrix", "array"))
t_ext <- 0
results <- filter_extreme_rules(rules_matrix, rules_list, t_ext)
expect_identical(class(results), c("matrix", "array"))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.