cadence.cost: Cost function for CDEN model fitting

Description Usage Arguments See Also

Description

The maximum likelihood cost function used for CDEN model fitting. Calculates the negative of the logarithm of the likelihood. A normal distribution prior can be set for the magnitude of the input-hidden layer weights, thus leading to weight penalty regularization.

Usage

1
2
cadence.cost(weights, x, y, n.hidden, hidden.fcn, distribution, sd.norm,
             valid)

Arguments

weights

weight vector of length returned by cadence.initialize.

x

matrix with number of rows equal to the number of samples and number of columns equal to the number of predictor variables.

y

column matrix of predictand values with number of rows equal to the number of samples.

n.hidden

number of hidden nodes in the CDEN model.

hidden.fcn

hidden layer transfer function.

distribution

a list that describes the probability density function associated with the predictand.

sd.norm

sd parameter for normal distribution prior for the magnitude of input-hidden layer weights; equivalent to weight penalty regularization.

valid

valid logical vector indicating which weights are non-zero or fixed at zero, i.e., due to use of parameters.fixed in distribution.

See Also

cadence.fit, optim, rprop



Search within the CaDENCE package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.