Predict conditional distribution parameters from a fitted CDEN model

Share:

Description

Predict conditional distribution parameters from a fitted CDEN model. The returned value is a matrix with columns corresponding to the parameters of the probability distribution specified in the distribution argument passed to cadence.fit.

Usage

1

Arguments

x

matrix with number of rows equal to the number of samples and number of columns equal to the number of predictor variables.

fit

list returned by cadence.fit.

Value

a matrix with number of rows equal to that of x and columns corresponding to the parameters of the distribution argument passed to cadence.fit.

See Also

cadence.fit, optim, rprop

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
    data(FraserSediment)
    lnorm.distribution.fixed <- list(density.fcn = dlnorm,
                                     parameters = c("meanlog", "sdlog"),
                                     parameters.fixed = "sdlog",
                                     output.fcns = c(identity, exp))
    fit <- cadence.fit(x = FraserSediment$x.1970.1976,
                       y = FraserSediment$y.1970.1976,
                       hidden.fcn = identity, maxit.Nelder = 100,
                       trace.Nelder = 1, trace = 1,
                       distribution = lnorm.distribution.fixed)
    pred <- cadence.predict(x = FraserSediment$x.1977.1979, fit = fit)
    matplot(pred, type = "l")