LR: Introducing the form of LR fuzzy number

Description Usage Arguments Value Author(s) References Examples

View source: R/LR.R

Description

Function LR introduce a total form for LR fuzzy number. Note that, if the membership function of fuzzy number N is

N(x)=≤ft\{ \begin{array}{lcc} L ≤ft( \frac{n-x}{α} \right) &\ \ if & \ \ x ≤q n \\ R ≤ft( \frac{x-n}{β} \right) &\ \ if & \ \ x > n \end{array} \right.

where L and R are two non-increasing functions from R^+ \cup \{0\} to [0,1] (say left and right shape function) and L(0)=R(0)=1 and also α,β>0; then N is named a LR fuzzy number and we denote it by N=(n, α, β)LR in which n is core and α and β are left and right spreads of N, respectively.

Usage

1
LR(m, m_l, m_r)

Arguments

m

The core of LR fuzzy number

m_l

The left spread of LR fuzzy number

m_r

The right spread of LR fuzzy number

Value

This function help to users to define any LR fuzzy number after introducing the left shape and the right shape functions L and R. This function consider LR fuzzy number LR(m, m_l, m_r) as a vector with 4 elements. The first three elements are m, m_l and m_r respectively; and the fourth element is considerd equal to 0 for distinguish LR fuzzy number from RL and L fuzzy numbers.

Author(s)

Abbas Parchami

References

Dubois, D., Prade, H., Fuzzy Sets and Systems: Theory and Applications. Academic Press (1980).

Taheri, S.M, Mashinchi, M., Introduction to Fuzzy Probability and Statistics. Shahid Bahonar University of Kerman Publications, In Persian (2009).

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# First introduce left and right shape functions of LR fuzzy number
Left.fun  = function(x)  { (1-x^2)*(x>=0)}
Right.fun = function(x)  { (exp(-x))*(x>=0)}
A = LR(20, 12, 10)
LRFN.plot(A, xlim=c(0,60), col=1)

## The function is currently defined as
function (m, m_l, m_r) 
{
    c(m, m_l, m_r, 0)
  }

Example output

Attaching package: 'Calculator.LR.FNs'

The following object is masked from 'package:base':

    sign

function (m, m_l, m_r) 
{
    c(m, m_l, m_r, 0)
}

Calculator.LR.FNs documentation built on May 2, 2018, 5:06 p.m.