Nothing
# Helper function to create a dummy boot_RRi_fit object
dummy_boot_RRi_fit <- function() {
set.seed(1)
nboot <- 10
# Create a dummy data.frame with bootstrap replicate id and parameter estimates.
df <- data.frame(
nboot = 1:nboot,
alpha = runif(nboot, 700, 900),
beta = runif(nboot, -400, -300),
c = runif(nboot, 0.7, 0.9),
lambda = runif(nboot, -4, -2),
phi = runif(nboot, -3, -1),
tau = runif(nboot, 5, 7),
delta = runif(nboot, 2, 4)
)
class(df) <- c("boot_RRi_fit", class(df))
df
}
dummy_obj <- dummy_boot_RRi_fit()
test_that("print.boot_RRi_fit outputs expected text", {
printed <- capture.output(print(dummy_obj))
expect_true(any(grepl("Bootstrap RRi Parameter Estimates", printed)))
expect_true(any(grepl("Number of bootstrap replicates:", printed)))
expect_true(any(grepl("Preview of estimated parameters", printed)))
# Test that the function returns invisibly
expect_identical(invisible(dummy_obj), dummy_obj)
})
test_that("summary.boot_RRi_fit returns a proper summary with robust measures (default)", {
sum_obj <- CardioCurveR:::summary.boot_RRi_fit(dummy_obj)
# The summary should be a list (transposed data.table) with a column named "alpha"
expect_type(sum_obj, "list")
expect_true("alpha" %in% sum_obj$Parameter)
# Check that the robust attribute is TRUE by default
expect_true(isTRUE(attr(sum_obj, "robust")))
# Check that each parameter has three elements: estimate, scale and CI string.
for(param in names(sum_obj)) {
expect_equal(length(sum_obj[["Parameter"]]), 7)
}
})
test_that("summary.boot_RRi_fit returns a summary with non-robust measures when robust=FALSE", {
sum_obj <- CardioCurveR:::summary.boot_RRi_fit(dummy_obj, robust = FALSE)
expect_false(attr(sum_obj, "robust"))
})
test_that("print.summary.boot_RRi_fit outputs expected text", {
sum_obj <- CardioCurveR:::summary.boot_RRi_fit(dummy_obj)
printed <- capture.output(print(sum_obj))
expect_true(any(grepl("Summary of Bootstrap RRi Parameter Estimates", printed)))
expect_true(any(grepl("95% confidence intervals are quantile-based", printed)))
# Check note for robust method is printed correctly
if (isTRUE(attr(sum_obj, "robust"))) {
expect_true(any(grepl("median and median absolute deviation", printed)))
} else {
expect_true(any(grepl("mean and standard deviation", printed)))
}
attr(sum_obj, "robust") <- FALSE
printed <- capture.output(print(sum_obj))
if (isTRUE(attr(sum_obj, "robust"))) {
expect_true(any(grepl("median and median absolute deviation", printed)))
} else {
expect_true(any(grepl("mean and standard deviation", printed)))
}
})
test_that("plot.boot_RRi_fit produces density plots without error", {
# Since the plot method prints the plot, we can check that the output is invisible
expect_invisible(
suppressMessages(plot(dummy_obj))
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.