Description Usage Arguments Value Author(s) References See Also Examples
View source: R/plot.catpredi.survival.R
Plots the functional form of the predictor variable we want to categorise. Additionally, the optimal cut points obtained with the catpredi.survival() function are drawn on the graph.
1 2 |
x |
An object of type catpredi.survival . |
... |
Additional arguments to be passed on to other functions. Not yet implemented. |
This function returns the plot of the relationship between the predictor variable and the outcome.
Irantzu Barrio and Maria Xose Rodriguez-Alvarez
I Barrio, M.X Rodriguez-Alvarez, L Meira-Machado, C Esteban and I Arostegui (2017). Comparison of two discrimination indexes in the categorisation of continuous predictors in time-to-event studies. SORT, 41:73-92
See Also as catpredi.survival
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | library(CatPredi)
library(survival)
set.seed(123)
#Simulate data
n = 500
tauc = 1
X <- rnorm(n=n, mean=0, sd=2)
SurvT <- exp(2*X + rweibull(n = n, shape=1, scale = 1)) + rnorm(n, mean=0, sd=0.25)
# Censoring time
CensTime <- runif(n=n, min=0, max=tauc)
# Status
SurvS <- as.numeric(SurvT <= CensTime)
# Data frame
dat <- data.frame(X = X, SurvT = pmin(SurvT, CensTime), SurvS = SurvS)
# Select optimal cut points using the AddFor algorithm
res <- catpredi.survival (formula= Surv(SurvT,SurvS)~1, cat.var="X", cat.points = 2,
data = dat, method = "addfor", conc.index = "cindex", range = NULL,
correct.index = FALSE)
# Plot
plot(res)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.