Man pages for CausalQueries
Make, Update, and Query Binary Causal Models

add_dotsHelper to fill in missing do operators in causal expression
CausalQueries'CausalQueries'
CausalQueries_internal_inherit_paramsCreate parameter documentation to inherit
clean_statementHelper to clean and check the validity of causal statements...
construct_commands_alter_atmake_par_values
construct_commands_other_argsmake_par_values
construct_commands_param_namesmake_par_values
data_helpersData helpers
democracy_dataDevelopment and Democratization: Data for replication of...
draw_causal_typeDraw a single causal type given a parameter vector
expand_nodal_expressionHelper to expand nodal expression
get_all_data_typesGet all data types
get_estimandshelper to get estimands
get_event_probabilitiesDraw event probabilities
get_parameter_matrixGet parameter matrix
get_query_typesLook up query types
get_type_posteriorshelper to get type distributions
inspectionHelpers for inspecting causal models
institutions_dataInstitutions and growth: Data for replication of analysis in...
interpret_typeInterpret or find position in nodal type
lipids_dataLipids: Data for Chickering and Pearl replication
list_non_parentsReturns a list with the nodes that are not directly pointing...
make_dagHelper to run a causal statement specifying a DAG into a...
make_data_singleGenerate full dataset
make_modelMake a model
make_parameters_dffunction to make a parameters_df from nodal types
make_par_valuesmake_par_values
make_par_values_stopsmake_par_values_stops
make_prior_distributionMake a prior distribution from priors
observe_dataObserve data, given a strategy
parameter_settingSetting parameters
parents_to_intHelper to turn parents_list into a list of data_realizations...
permProduces the possible permutations of a set of nodes
plot_modelPlots a DAG in ggplot style using a causal model input
prep_stan_dataPrepare data for 'stan'
print.causal_modelPrint a short summary for a causal model
print.model_queryPrint a tightened summary of model queries
prior_settingSetting priors
query_distributionCalculate query distribution
query_helpersQuery helpers
query_modelGenerate data frame for batches of causal queries
query_to_expressionHelper to turn query into a data expression
realise_outcomesRealise outcomes
reveal_outcomesReveal outcomes
set_confoundSet confound
set_parameter_matrixSet parameter matrix
set_prior_distributionAdd prior distribution draws
set_restrictionsRestrict a model
summary.causal_modelSummarizing causal models
summary.model_querySummarizing model queries
update_modelFit causal model using 'stan'
CausalQueries documentation built on April 3, 2025, 7:46 p.m.