summary.causal_model | R Documentation |
summary method for class "causal_model
".
## S3 method for class 'causal_model'
summary(object, include = NULL, ...)
## S3 method for class 'summary.causal_model'
print(x, what = NULL, ...)
object |
An object of |
include |
A character string specifying the additional objects to include in summary. Defaults to |
... |
Further arguments passed to or from other methods. |
x |
An object of |
what |
A character string specifying the objects summaries to print. Defaults to |
In addition to the default objects included in 'summary.causal_model' users can request additional objects via 'include' argument. Note that these additional objects can be large for complex models and can increase computing time. The 'include' argument can be a vector of any of the following additional objects:
"parameter_matrix"
A matrix mapping from parameters into causal types,
"parameter_mapping"
a matrix mapping from parameters into data types,
"causal_types"
A data frame listing causal types and the nodal types that produce them,
"prior_distribution"
A data frame of the parameter prior distribution,
"ambiguities_matrix"
A matrix mapping from causal types into data types,
"type_prior"
A matrix of type probabilities using priors.
print.summary.causal_model
reports causal statement, full specification of nodal types and summary of model restrictions. By specifying 'what' argument users can instead print a custom summary of any set of the following objects contained in the 'summary.causal_model':
"statement"
A character string giving the causal statement,
"nodes"
A list containing the nodes in the model,
"parents"
A list of parents of all nodes in a model,
"parents_df"
A data frame listing nodes, whether they are root nodes or not, and the number and names of parents they have,
"parameters"
A vector of 'true' parameters,
"parameters_df"
A data frame containing parameter information,
"parameter_names"
A vector of names of parameters,
"parameter_mapping"
A matrix mapping from parameters into data types,
"parameter_matrix"
A matrix mapping from parameters into causal types,
"causal_types"
A data frame listing causal types and the nodal types that produce them,
"nodal_types"
A list with the nodal types of the model,
"data_types"
A list with the all data types consistent with the model; for options see '"?get_all_data_types"',
"prior_hyperparameters"
A vector of alpha values used to parameterize Dirichlet prior distributions; optionally provide node names to reduce output ‘inspect(prior_hyperparameters, c(’M', 'Y'))'
"prior_distribution"
A data frame of the parameter prior distribution,
"prior_event_probabilities"
A vector of data (event) probabilities given a single (sepcified) parameter vector; for options see '"?get_event_probabilities"',
"ambiguities_matrix"
A matrix mapping from causal types into data types,
"type_prior"
A matrix of type probabilities using priors,
"type_posterior"
A matrix of type probabilities using posteriors,
"posterior_distribution"
A data frame of the parameter posterior distribution,
"posterior_event_probabilities"
A sample of data (event) probabilities from the posterior,
"data"
A data frame with data that was used to update model,
"stanfit"
A 'stanfit' object generated by Stan,
"stan_summary"
A 'stanfit' summary with updated parameter names.
Returns the object of class summary.causal_model
that preserves the list structure of causal_model
class and adds the following additional objects:
"parents"
a list of parents of all nodes in a model,
"parameters"
a vector of 'true' parameters,
"parameter_names"
a vector of names of parameters,
"data_types"
a list with the all data types consistent with the model; for options see "?get_all_data_types"
,
"prior_event_probabilities"
a vector of prior data (event) probabilities given a parameter vector; for options see "?get_event_probabilities"
,
"prior_hyperparameters"
a vector of alpha values used to parameterize Dirichlet prior distributions; optionally provide node names to reduce output "inspect(prior_hyperparameters, c('M', 'Y'))"
model <-
make_model("X -> Y")
model |>
update_model(
keep_event_probabilities = TRUE,
keep_fit = TRUE,
data = make_data(model, n = 100)
) |>
summary()
model <-
make_model("X -> Y")
model <-
model |>
update_model(
keep_event_probabilities = TRUE,
keep_fit = TRUE,
data = make_data(model, n = 100)
)
print(summary(model), what = "type_posterior")
print(summary(model), what = "posterior_distribution")
print(summary(model), what = "posterior_event_probabilities")
print(summary(model), what = "data_types")
print(summary(model), what = "prior_hyperparameters")
print(summary(model), what = c("statement", "nodes"))
print(summary(model), what = "parameters_df")
print(summary(model), what = "posterior_event_probabilities")
print(summary(model), what = "posterior_distribution")
print(summary(model), what = "data")
print(summary(model), what = "stanfit")
print(summary(model), what = "type_posterior")
# Large objects have to be added to the summary before printing
print(summary(model, include = "ambiguities_matrix"),
what = "ambiguities_matrix")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.