View source: R/make_par_values.R
make_par_values | R Documentation |
This is the one step function for make_priors and make_parameters.
See make_priors
for more help.
make_par_values(
model,
alter = "priors",
x = NA,
alter_at = NA,
node = NA,
label = NA,
nodal_type = NA,
param_set = NA,
given = NA,
statement = NA,
join_by = "|",
param_names = NA,
distribution = NA,
normalize = FALSE
)
model |
model created with |
alter |
character vector with one of "priors" or "param_value" specifying what to alter |
x |
vector of real non negative values to be substituted into "priors" or "param_value" |
alter_at |
string specifying filtering operations to be applied to parameters_df, yielding a logical vector indicating parameters for which values should be altered. (see examples) |
node |
string indicating nodes which are to be altered |
label |
string. Label for nodal type indicating nodal types for which values are to be altered. Equivalent to nodal_type. |
nodal_type |
string. Label for nodal type indicating nodal types for which values are to be altered |
param_set |
string indicating the name of the set of parameters to be altered |
given |
string indicates the node on which the parameter to be altered depends |
statement |
causal query that determines nodal types for which values are to be altered |
join_by |
string specifying the logical operator joining expanded
types when |
param_names |
vector of strings. The name of specific parameter in the form of, for example, 'X.1', 'Y.01' |
distribution |
string indicating a common prior distribution (uniform, jeffreys or certainty) |
normalize |
logical. If TRUE normalizes such that param set probabilities sum to 1. |
# the below methods can be applied to either priors or
# param_values by specifying the desired option in \code{alter}
model <- CausalQueries::make_model("X -> M -> Y; X <-> Y")
#altering values using \code{alter_at}
CausalQueries:::make_par_values(model = model,
x = c(0.5,0.25),
alter_at = paste(
"node == 'Y' &",
"nodal_type %in% c('00','01') &",
"given == 'X.0'"))
#altering values using \code{param_names}
CausalQueries:::make_par_values(model = model,
x = c(0.5,0.25),
param_names = c("Y.10_X.0","Y.10_X.1"))
#altering values using \code{statement}
CausalQueries:::make_par_values(model = model,
x = c(0.5,0.25),
statement = "Y[M=1] > Y[M=0]")
#altering values using a combination of other arguments
CausalQueries:::make_par_values(model = model,
x = c(0.5,0.25), node = "Y", nodal_type = c("00","01"), given = "X.0")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.