query_model | R Documentation |
Calculated from a parameter vector, from a prior or from a posterior distribution.
query_model(
model,
queries = NULL,
given = NULL,
using = list("parameters"),
parameters = NULL,
stats = NULL,
n_draws = 4000,
expand_grid = NULL,
case_level = FALSE,
query = NULL,
cred = 95,
labels = NULL
)
model |
A |
queries |
A vector of strings or list of strings specifying queries on potential outcomes such as "Y[X=1] - Y[X=0]". Queries can also indicate conditioning sets by placing second queries after a colon: "Y[X=1] - Y[X=0] :|: X == 1 & Y == 1". Note a colon, ':|:' is used rather than the traditional conditioning marker '|' to avoid confusion with logical operators. |
given |
A character vector specifying given conditions for each query.
A 'given' is a quoted expression that evaluates to logical statement.
|
using |
A vector or list of strings. Whether to use priors, posteriors or parameters. |
parameters |
A vector of real numbers in [0,1]. Values of parameters to
specify (optional). By default, parameters is drawn from the parameters dataframe.
See |
stats |
Functions to be applied to the query distribution. If NULL, defaults to mean, standard deviation, and 95% confidence interval. Functions should return a single numeric value. |
n_draws |
An integer. Number of draws. |
expand_grid |
Logical. If |
case_level |
Logical. If TRUE estimates the probability of the query for a case. |
query |
alias for queries |
cred |
size of the credible interval ranging between 0 and 100 |
labels |
labels for queries: if provided labels should have the length of the combinations of requests |
Queries can condition on observed or counterfactual quantities.
Nested or "complex" counterfactual queries of the form
Y[X=1, M[X=0]]
are allowed.
An object of class model_query
. A data frame with possible
columns: model, query, given, using, case_level, mean, sd, cred.low, cred.high.
Further columns are generated as specified in stats
.
model <- make_model("X -> Y")
query_model(model, "Y[X=1] - Y[X = 0]", using = "priors")
query_model(model, "Y[X=1] - Y[X = 0] :|: X==1 & Y==1", using = "priors")
query_model(model,
list("Y[X=1] - Y[X = 0]",
"Y[X=1] - Y[X = 0] :|: X==1 & Y==1"),
using = "priors")
query_model(model, "Y[X=1] > Y[X = 0]", using = "parameters")
query_model(model, "Y[X=1] > Y[X = 0]", using = c("priors", "parameters"))
# `expand_grid= TRUE` requests the Cartesian product of arguments
models <- list(
M1 = make_model("X -> Y"),
M2 = make_model("X -> Y") |>
set_restrictions("Y[X=1] < Y[X=0]")
)
# No expansion: lists should be equal length
query_model(
models,
query = list(ATE = "Y[X=1] - Y[X=0]",
Share_positive = "Y[X=1] > Y[X=0]"),
given = c(TRUE, "Y==1 & X==1"),
using = c("parameters", "priors"),
expand_grid = FALSE)
# Expansion when query and given arguments coupled
query_model(
models,
query = list(ATE = "Y[X=1] - Y[X=0]",
Share_positive = "Y[X=1] > Y[X=0] :|: Y==1 & X==1"),
using = c("parameters", "priors"),
expand_grid = TRUE)
# Expands over query and given argument when these are not coupled
query_model(
models,
query = list(ATE = "Y[X=1] - Y[X=0]",
Share_positive = "Y[X=1] > Y[X=0]"),
given = c(TRUE, "Y==1 & X==1"),
using = c("parameters", "priors"),
expand_grid = TRUE)
# An example of a custom statistic: uncertainty of token causation
f <- function(x) mean(x)*(1-mean(x))
query_model(
model,
using = list( "parameters", "priors"),
query = "Y[X=1] > Y[X=0]",
stats = c(mean = mean, sd = sd, token_variance = f))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.