R/BSAdj.R

Defines functions BS.paid.adj inflateTriangle

Documented in BS.paid.adj inflateTriangle

# Author: Marco De Virgilis
# Rationale: Set of functions to implement the two adjustments proposed by Berquist and Sherman.
# In particular:
# Inflate Triangle
# Paid Adjustment



# Data Selection Method ----------------------------------------------------------

### function to inflate triangle from diagonal

inflateTriangle <- function(Triangle, rate) {
    
    Triangle <- checkTriangle(Triangle)
    
    # Extract dimension from the triangle
    
    n <- dim(Triangle)[1]
    
    # deflate the latest diagonal in order to populate the triangle
    
    infl_tr <- sapply(1:n, function(x) {
        diag(Triangle[, n:1])[n:1]/(1 + rate)^(n - x)
    })
    
    # initialize the final output
    
    infl_final <- matrix(NA, ncol = n, nrow = n)
    
    # populate the final matrix
    
    for (i in 1:n) {
        infl_final[, i] <- c(t(infl_tr)[i:n, i], rep(NA, i - 1))
        
    }
    
    class(infl_final)<-c("triangle", class(infl_final))
    
    return(infl_final)
    
}

### Compute the paid adj triangle

BS.paid.adj <- function(Triangle.rep.counts = NULL, 
                        Triangle.closed, Triangle.paid, 
                        ult.counts = NULL, 
                        regression.type = "exponential") {
  
    # Initial checks on the provided inputs
  
    if (is.null(Triangle.rep.counts) & is.null(ult.counts)) {
      stop("Provide a triangle of reported claim counts or a vector of Ultimate Claim Counts")
    }
    
    if (!is.null(Triangle.rep.counts) & !is.null(ult.counts)) {
      stop(
        "Provide either a triangle of reported claim counts or a vector of Ultimate Claim Counts"
      )
    }
    
    if (!(regression.type %in% c("exponential", "linear"))) {
      stop("Regression type admitted: exponential or linear")
    }
    
    if (!is.null(Triangle.rep.counts)) {
      Triangle.rep.counts <- checkTriangle(Triangle.rep.counts)
    }
    
    Triangle.closed <- checkTriangle(Triangle.closed)
    Triangle.paid <- checkTriangle(Triangle.paid)
    
    if (!is.null(Triangle.rep.counts)) {
      if (!all(
        dim(Triangle.rep.counts) == dim(Triangle.closed) &
        dim(Triangle.closed) == dim(Triangle.paid)
      )) {
        stop("Triangles of different dimensions")
      }
    } else {
      if (!all(dim(Triangle.closed) == dim(Triangle.paid))) {
        stop("Triangles of different dimensions")
      }
    }
    
    # Define triangle dimensions
    
    n <- dim(Triangle.paid)[1]
    
    # check if the vector of ultimates provided matches the triangle
    
    if ((!is.null(ult.counts)) & (length(ult.counts) != n)) {
      stop("Ultimate Claim Counts provided do not match the triangles")
    }
    
    # assign / calculate the ultimates
    
    if (is.null(ult.counts)) {
      ult.counts <- MackChainLadder(Triangle.rep.counts, 
                                    est.sigma = "Mack")$FullTriangle[, n]
    } else {
      ult.counts <- ult.counts
    }
    
    # calculate disposal rates
    
    disp_rate_tr <- sweep(Triangle.closed, 1, ult.counts, "/")
    
    # retain the latest disposal rates, more reflective of the most recent experience
    
    disp_rate_sel <- diag(disp_rate_tr[, n:1])[n:1]
    
    # create the adjuste counts triangle based on the dsiposal rates just estimated
    
    full_adj_counts <-
      matrix(apply(expand.grid(disp_rate_sel, ult.counts), 1, prod),
             ncol = n,
             byrow = TRUE)
    
    # the lower triangle is not needed
    
    full_adj_counts[lower.tri(full_adj_counts)[, n:1]] <- NA
    
    # initialize adjusted paid triangle that will serve as output
    paid_adj <- matrix(NA, ncol = n, nrow = n)
    
    # define if the estimated values are within the range which the regression is based upon
    
    in_range <- t(sapply(1:(n - 1), function(x) {
      c(findInterval(full_adj_counts[x, 1:(n - x + 1)], 
                     Triangle.closed[x, 1:(n - x + 1)]),
        rep(NA, x - 1))
    }))
    
    for (i in (1:(n - 1))) {
      for (j in (1:(n - i))) {
        # Regression data
        # In range data
        if (in_range[i, j] != 0) {
          myDat <- data.frame(x = Triangle.closed[i, j:(j + 1)],
                              y = Triangle.paid[i, j:(j + 1)])
        }else{
          # Not in range data
          myDat <- data.frame(x = Triangle.closed[i, 1:2],
                              y = Triangle.paid[i, 1:2])
        }
        # Prediction data
        newDat <- data.frame(x = full_adj_counts[i, j])
        
        # Calculate adjustments
        if ("exponential" %in% regression.type) {
          
          myLM <- lm(log(y) ~ x, data = myDat)
          paid_adj[i, j] <- exp(predict(myLM, newdata=newDat))
          
        }else{ # linear
          
          myLM <- lm(y ~ x, data = myDat)
          paid_adj[i, j] <- predict(myLM, newdata=newDat)
          
        }
      }
    }
    
    
    # get the diagonal from the initial triangle, i.e. the diagonal is not adjusted
    
    diag(paid_adj[, n:1]) <- diag(Triangle.paid[, n:1])
    
    # return the final output as an object of class triangle
    
    return(as.triangle(paid_adj))
    
  }

Try the ChainLadder package in your browser

Any scripts or data that you put into this service are public.

ChainLadder documentation built on Sept. 11, 2024, 8:35 p.m.