R/ChainLadder.R

Defines functions checkTriangle predict.ChainLadder predict.TriangleModel checkWeights chainladder

Documented in chainladder predict.ChainLadder predict.TriangleModel

## Author: Markus Gesmann
## Copyright: Markus Gesmann, markus.gesmann@gmail.com
## Date:19/09/2008


chainladder <- function(Triangle, weights=1,
                        delta=1){

    Triangle <- checkTriangle(Triangle)
    n <- dim(Triangle)[2]


    ## Mack uses alpha between 0 and 2 to distinguish
    ## alpha = 0 straight averages
    ## alpha = 1 historical chain ladder age-to-age factors
    ## alpha = 2 ordinary regression with intercept 0

    ## However, in Zehnwirth & Barnett they use the notation of delta, whereby delta = 2 - alpha
    ## the delta is than used in a linear modelling context.

    weights <- checkWeights(weights, Triangle)
    delta <- rep(delta,(n-1))[1:(n-1)]

    lmCL <- function(i, Triangle){
      lm(y~x+0, weights=weights[,i]/Triangle[,i]^delta[i],
         data=data.frame(x=Triangle[,i], y=Triangle[,i+1]))
    } 
    myModel <- lapply(c(1:(n-1)), lmCL, Triangle)
    
    output <- list(Models=myModel, Triangle=Triangle, delta=delta, weights=weights)
    class(output) <- c("ChainLadder", "TriangleModel", class(output))
    return(output)
}

checkWeights <- function(weights, Triangle){

    if(is.null(dim(weights))){
        if(length(weights)==1){
            my.weights <- Triangle
            my.weights[!is.na(Triangle)] <- weights
            weights <- my.weights
        }
    }

return(weights)

}




###############################################################################
## predict
##
predict.TriangleModel <- function(object,...){

  n <- ncol(object[["Triangle"]])
  
  FullTriangle <- object[["Triangle"]]
  MF <- lapply(c(2:n), 
               function(j){
                 ii <- is.na(FullTriangle[,j])
                 FF <- predict(object[["Models"]][[j-1]], se.fit=TRUE,                    
                               newdata=data.frame(x=FullTriangle[ii, j-1]))
                 FullTriangle[ii,j] <<- FF$fit
                 return(FF)
               }             
               )
  
    return(list(FullTriangle=FullTriangle, Prediction=MF))
}



predict.ChainLadder <- function(object,...){
  res <- predict.TriangleModel(object,...)
  res[["FullTriangle"]]
}

################################################################################
## estimate tail factor, idea from Thomas Mack:
##       THE STANDARD ERROR OF CHAIN LADDER RESERVE ESTIMATES:
##       RECURSIVE CALCULATION AND INCLUSION OF A TAIL FACTOR
##
tailfactor <- function (clratios){
    f <- clratios
    n <- length(f)
    if (f[n - 2] * f[n - 1] > 1.0001) {
        fn <- which(clratios > 1)
        f <- clratios[fn]
        n <- max(fn)
        tail.model <- lm(log(f - 1) ~ fn)
        co <- coef(tail.model)
        tail <- exp(co[1] + c((n+1):(n + 100)) * co[2]) + 1
        tail <- prod(tail)
        if (tail > 2){
            print("The estimate tail factor was bigger than 2 and has been reset to 1.")
            tail <- 1
        }
    }
    else {
        tail <- 1
        tail.model <- NULL
    }
    return(list(tail.factor=tail, tail.model=tail.model))
}


checkTriangle <- function(Triangle){

    ## if a triangle is an array with 3 dimension convert it into a matrix
    .dim <- dim(Triangle)
    if(length(.dim)>3){
      stop("Your array has too many dimensions.")
    }

    n <- .dim[2]
    m <- .dim[1]

    if(n>m){
#        print(.dim)
#        stop("Number of origin periods has to be equal or greater than the number of development periods.\n")
        stop("Number of origin periods, ", m, ", is less than the number of development periods, ", n, ".\n")
    }


    if(length(.dim)==3 & .dim[3]==1){
        dim(Triangle) <- c(m,n)
    }

    if("data.frame" %in% class(Triangle)){
        Triangle <- as.matrix(Triangle)
        Triangle <- as.triangle(Triangle)
        storage.mode(Triangle) <- "double"
    }

    tri.dimnames <- dimnames(Triangle)
    if(is.null(tri.dimnames[[1]])){
        .origin <- 1:m
    }else{
        .origin <- tri.dimnames[[1]]
    }
    if(is.null(tri.dimnames[[2]])){
        .dev <- 1:n
    }else{
        .dev <- tri.dimnames[[2]]
    }

    dimnames(Triangle) <- list(origin=.origin, dev=.dev)

    return(Triangle)
}

Try the ChainLadder package in your browser

Any scripts or data that you put into this service are public.

ChainLadder documentation built on Sept. 11, 2024, 8:35 p.m.