Nothing
## Author: Dan Murphy
## Copyright: Daniel Murphy, chiefmurphy@gmail.com
## Date: 10/9/2008
## 3/20/2013
#
LRfcnPair <- function(a, B, E) sum(B ^ (1 - a) * E) / sum(B ^ (2 - a))
LRfcnPairD <- function(a, B, E, s) LRfcnPair(a, B, E) - s
LRdist <- function(a, B, E, s) abs(LRfcnPair(a, B, E) - s)
.approxeq <- function (x, y, tolerance = .Machine$double.eps^0.5) abs(x - y) < tolerance
CLFMdelta <- function(Triangle, selected, tolerance = .0005, ...){ #step.d = 1, ...){
step.d <- 1
# Find the value of delta such that coef(Triangle, delta=delta) = selected
# per the CLFM paper by Bardis, Majidi, & Murphy (Variance, 2013)
# Note that the paper refered to the parameter as alpha. The name is changed
# to 'delta' in this package to conform to already-existing parameterization
# of the chainladder() function.
# Calculate the "major" averages: VW (delta=1), SA (2), RA (0)
# If selected factor is within tolerance of a major average *in that order*
# set delta=indicated integer and we're done.
# Algorithm originally written with development period named "age" (U.S. custom).
# Also, algoritm originally written for a Triangle in long format and
# a more involved "selected" object derived from the Triangle.
# It will be easier to align "selected" and "Triangle" if latter is a matrix.
Triangle <- as.triangle(Triangle, dev = "age")
if (length(selected) != (ncol(Triangle) - 1)) stop("length(selected) must equal ncol(Triangle)-1")
# if (!all.equal(names(selected), head(colnames(Triangle), -1)))
# warning("selected does not have the same names as columns of Triangle")
# Calculate the optimal alpha's per the FFM paper
# for Triangle tri and the selected link ratios.
# tdf is the original triangle in df format
# tdfBegin is the original triangle where the beginning values of
# each development period may have been adjusted for
# missing values or zero values.
# beginvalue's can still be zero if (end)value was zero.
# We must ignore those (0,0) observations.
# Wish we could use optimize, but we define optimal to be the least
# optimal value (in absolute value), and there's no guarantee that,
# in case of a tie, optimize won't return the greater value.
# Return vector of optimal alphas.
Ka <- length(selected) # number of ata's excluding tail
K <- ncol(Triangle) # number of columns in triangle
ata <- selected
ages <- head(colnames(Triangle), -1)
# a is the vector of alpha's to search over for optimality
# maxa = right endpoint of search interval
# So search interval = [0,10] on positive side, [-10,0] on negative side
# Change 8/19/11 different positive and negative widths, coincide with PSItable
maxaPos <- 8
maxaNeg <- 4
# Start off w/ NAs. NA's at end will be informative
oavec <- structure(rep(as.numeric(NA), Ka), names = ages)
# We'll flag any index where no solution exists.
attr(oavec, "foundSolution") <- rep(TRUE, Ka)
# If ata's are within tolerance of the "major" averages, set oa
# accordingly and can ignore those ages in search for optimal value.
# Often, the major averages are close together, so prioritize:
# volume weighted, simple average, regression average
# Higher priortized method overrides lower prioritized method
RAata.Triangle <- function(Triangle) coefficients(chainladder(Triangle, delta=0))
VWata.Triangle <- function(Triangle) coefficients(chainladder(Triangle, delta=1))
SAata.Triangle <- function(Triangle) coefficients(chainladder(Triangle, delta=2))
oavec[names(tata <- RAata.Triangle(Triangle))][.approxeq(tata, selected, tolerance = tolerance)] <- 0
oavec[names(tata <- SAata.Triangle(Triangle))][.approxeq(tata, selected, tolerance = tolerance)] <- 2
oavec[names(tata <- VWata.Triangle(Triangle))][.approxeq(tata, selected, tolerance = tolerance)] <- 1
# Original algorithm works on "long triangles" with value.next in same row as value, where
# value.next is the value in the same row and age = next age in "selected".
# Here we assume Triangle is a matrix, and selected aligns with columns of Triangle.
Triangle <- cbind(.as.LongTriangle(Triangle[, -K, drop = FALSE]), value.next = .as.LongTriangle(Triangle[, -1, drop = FALSE])[, 3])
# For each ata age ...
for (k in (1:Ka)[is.na(oavec[1:Ka])]) {
# After all is said and done, if oa is still NA, it will mean that
# no optimal alpha was found.
oa <- NA
# value = value at age k,
# value.next = value at endage k
# Ignore pairs w/ NA's in one or more cells
rn <- which(Triangle$age == ages[k]
& !is.na(Triangle$value) & !is.na(Triangle$value.next)
)
# If no row numbers identified, move along. Shouldn't happen if
# selected and Triangle from same triangle.
if (length(rn)>0) {
B <- Triangle$value[rn]
E <- Triangle$value.next[rn]
# If more than one observation at age k, do the calculations.
# Otherwise (when only one link ratio observation) oa=1 by default.
if (length(rn)>1) {
# We will look through a three times until found,
# each time increasing the search resolution of a by factor of ten.
# 'width' = search resolution
width <- step.d
loopcntr <- 1
while (loopcntr <= 3 & is.na(oa)) {
# a=seq(0,maxa,by=width)
# positive side first
# Change 8/19/11 different positive and negative widths, coincide with PSItable
a <- seq(0, maxaPos, by = width)
# Calc (absolute) distance between the selected ata and the average
# link ratio for Begin value, End value, and exponents in 'a' ...
tmp <- sapply(a, LRdist, B, E, ata[k])
# ... and find the minimum.
vp <- which.min(tmp)
posroot <- a[vp]
# See if uniroot will run within one step of vp
# Note: it has occurred that the curvature of the function is such
# that posroot could be at the optimal solution but interpolation
# between the values one step away moves beyond tolerance.
# Therefore, if the current root yields an ata within tolerance of
# the selected ata, then we'll take that value as the solution.
# Otherwise, we'll use uniroot.
if (LRdist(posroot, B, E, ata[k]) > tolerance) {
# "One step" handled differently within interval vs at endpoints
if (vp>1 & vp<length(a)) { # vp within interval
# Must be of opposite sign at endpoints for uniroot to run
if (sign(LRfcnPairD(a[vp - 1], B, E, ata[k])) *
sign(LRfcnPairD(a[vp + 1], B, E, ata[k])) < 0) {
posroot<-uniroot(LRfcnPairD, c(a[vp - 1], a[vp + 1]), B, E, ata[k])$root
}
}
else {
if (vp == 1) {# vp at left endpoint
# must be of opposite sign at endpoints
if (sign(LRfcnPairD(a[vp], B, E, ata[k])) *
sign(LRfcnPairD(a[vp + 1], B, E, ata[k])) < 0) {
posroot <- uniroot(LRfcnPairD, c(a[vp], a[vp + 1]), B, E, ata[k])$root
}
}
else { # vp at right endpoint
# must be of opposite sign at endpoints
if (sign(LRfcnPairD(a[vp - 1], B, E, ata[k])) *
sign(LRfcnPairD(a[vp], B, E, ata[k])) < 0) {
posroot <- uniroot(LRfcnPairD, c(a[vp - 1], a[vp]), B, E, ata[k])$root
}
}
}
# if now not within tolerance, give positive root infinite value
if (LRdist(posroot,B,E,ata[k]) > tolerance) posroot <- Inf
}
# negative side next
# Change 8/19/11 different positive and negative widths, coincide with PSItable
a <- seq(0, maxaNeg, by = width)
tmp <- sapply(-a, LRdist, B, E, ata[k])
vn <- which.min(tmp)
negroot <- -a[vn]
if (LRdist(negroot, B, E, ata[k]) > tolerance) {
# see if uniroot will run within a step of vn
if (vn > 1 & vn < length(a)) { # within interval
# must be of opposite sign at endpoints
if (sign(LRfcnPairD(-a[vn + 1], B, E, ata[k])) *
sign(LRfcnPairD(-a[vn - 1], B, E, ata[k])) < 0) {
negroot <- uniroot(LRfcnPairD, c(-a[vn + 1], -a[vn - 1]), B, E, ata[k])$root
}
}
else {
if (vn == 1) { # at 0, which for negative side is right endpoint
# must be of opposite sign at endpoints
if (sign(LRfcnPairD(-a[vn + 1], B, E, ata[k])) *
sign(LRfcnPairD(-a[vn], B, E, ata[k])) < 0) {
negroot <- uniroot(LRfcnPairD,c(-a[vn + 1], -a[vn]), B, E, ata[k])$root
}
}
else { # vn at left endpoint
# must be of opposite sign at endpoints
if (sign(LRfcnPairD(-a[vn], B, E,ata[k])) *
sign(LRfcnPairD(-a[vn - 1], B, E,ata[k])) < 0) {
negroot <- uniroot(LRfcnPairD, c(-a[vn], -a[vn - 1]), B, E, ata[k])$root
}
}
}
# if now not within tolerance, give negative root infinite value
if (LRdist(negroot, B, E, ata[k]) > tolerance) negroot <- -Inf
}
if (posroot < -negroot) oa <- posroot
else if (is.finite(negroot)) oa <- negroot
# get ready for next try
loopcntr <- loopcntr + 1
width <- width / 10
} # end of three-tries loop
} # end of 'if more than one observation at age k' logic
# Only one ata observation at age k; oa=1 by default if
# selected factor = observed factor, otherwise oa=unity
else oa <- ifelse(ata[k] == E / B, 1.0, NA)
if (is.na(oa)) {
warning("No optimal delta solution for age ",
ages[k],". Returning NA.")
# oa <- 1.0
attr(oavec, "foundSolution")[k] <- FALSE
}
oavec[k] <- oa
} # end of length(rn)>0 case
} # end of k loop
# Now that we have all the optimal alpha's, go through them one more time
# and set them equal to the closest integer if they are within 'tolerance'
# of the closest integer.
roa <- round(oavec,0)
i <- abs(oavec-roa) < tolerance & !is.na(oavec)
oavec[i] <- roa[i]
oavec
}
LRfunction <- function(x, y, delta) {
F <- y / x
sapply(delta, function(a) {
w <- x ^ (2 - a) / sum(x ^ (2 - a))
sum(w * F)
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.