Nothing
# ChileDataAPI - Access Chilean Data via APIs and Curated Datasets
# Version 0.2.0
# Copyright (C) 2025 Renzo Caceres Rossi
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# get_chile_population
library(testthat)
test_that("get_chile_population() returns a tibble with correct structure and types", {
skip_on_cran()
result <- get_chile_population()
expect_s3_class(result, "tbl_df")
expect_named(result, c("indicator", "country", "year", "value", "value_label"))
expect_equal(ncol(result), 5)
expect_type(result$indicator, "character")
expect_type(result$country, "character")
expect_type(result$year, "integer")
expect_type(result$value, "integer")
expect_type(result$value_label, "character")
})
test_that("get_chile_population() returns data only for Chile", {
skip_on_cran()
result <- get_chile_population()
expect_true(all(result$country == "Chile"))
})
test_that("get_chile_population() returns correct indicator label", {
skip_on_cran()
result <- get_chile_population()
expect_true(all(result$indicator == "Population, total"))
})
test_that("get_chile_population() returns data for years 2010 to 2022", {
skip_on_cran()
result <- get_chile_population()
expect_true(all(result$year %in% 2010:2022))
expect_equal(sort(unique(result$year)), 2010:2022)
})
test_that("get_chile_population() returns exactly 13 rows (one per year 2010-2022)", {
skip_on_cran()
result <- get_chile_population()
expect_equal(nrow(result), 13)
})
test_that("get_chile_population() year column has no missing values", {
skip_on_cran()
result <- get_chile_population()
expect_false(any(is.na(result$year)))
})
test_that("get_chile_population() value column has no missing values and is numeric", {
skip_on_cran()
result <- get_chile_population()
expect_false(any(is.na(result$value)))
expect_true(is.numeric(result$value))
})
test_that("get_chile_population() value_label is formatted with commas", {
skip_on_cran()
result <- get_chile_population()
expect_true(all(grepl(",", result$value_label)))
})
test_that("get_chile_population() years are sorted in descending order", {
skip_on_cran()
result <- get_chile_population()
expect_equal(result$year, sort(result$year, decreasing = TRUE))
})
test_that("get_chile_population() indicator and country columns have consistent values", {
skip_on_cran()
result <- get_chile_population()
expect_equal(length(unique(result$indicator)), 1)
expect_equal(length(unique(result$country)), 1)
})
test_that("get_chile_population() population values are positive and reasonable for Chile", {
skip_on_cran()
result <- get_chile_population()
expect_true(all(result$value > 0))
expect_true(all(result$value >= 15000000)) # At least 15 million
expect_true(all(result$value <= 25000000)) # At most 25 million
})
test_that("get_chile_population() returns consistent structure", {
skip_on_cran()
result <- get_chile_population()
expect_false(is.null(result))
expect_s3_class(result, "data.frame")
expect_equal(length(names(result)), 5)
})
test_that("get_chile_population() value_label matches formatted value column", {
skip_on_cran()
result <- get_chile_population()
# Remove commas and convert to numeric to compare
numeric_label <- as.numeric(gsub(",", "", result$value_label))
expect_equal(numeric_label, result$value)
})
test_that("get_chile_population() contains no empty strings in text columns", {
skip_on_cran()
result <- get_chile_population()
expect_true(all(nchar(result$indicator) > 0))
expect_true(all(nchar(result$country) > 0))
expect_true(all(nchar(result$value_label) > 0))
})
test_that("get_chile_population() population shows expected growth trend", {
skip_on_cran()
result <- get_chile_population()
# Sort by year ascending to check trend
result_sorted <- result[order(result$year), ]
# Check that population generally increased from 2010 to 2022
first_year_pop <- result_sorted$value[1] # 2010
last_year_pop <- result_sorted$value[nrow(result_sorted)] # 2022
expect_true(last_year_pop > first_year_pop)
})
test_that("get_chile_population() all values are realistic for Chile's population", {
skip_on_cran()
result <- get_chile_population()
expect_true(all(is.finite(result$value)))
# Chile's population should be in the 17-20 million range
expect_true(all(result$value >= 17000000)) # Lower bound based on known range
expect_true(all(result$value <= 20000000)) # Upper bound based on known range
})
test_that("get_chile_population() population growth rate is reasonable", {
skip_on_cran()
result <- get_chile_population()
result_sorted <- result[order(result$year), ]
# Check that population growth is reasonable (not extreme changes year-over-year)
if (nrow(result_sorted) > 1) {
for (i in 2:nrow(result_sorted)) {
growth_rate <- (result_sorted$value[i] - result_sorted$value[i-1]) / result_sorted$value[i-1]
expect_true(abs(growth_rate) <= 0.05) # Annual growth should not exceed 5%
}
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.