Description Usage Value Author(s) References See Also Examples
Display the Expectation and Maximization algorithm current options.
1 |
A list of EM options :
epsi : The upper bound of the relative increasing on log-likelihood.
nberSmallEM : The number of random parameter points from which to run small EMs. The estimated parameter point associated to the higher maximum log-likelihood is then used to initialise the final EM run.
nberIterations : The number of iterations in each small EM.
typeSmallEM : 0 = classic EM, 1 = SEM and 2 = CEM.
typeEM : 0 = classic EM, 1 = SEM and 2 = CEM.
nberMaxIterations : The maximum number of iterations in the final EM if the convergence is slow.
putThreshold : The indication of whether all parameter estimates are positive.
Wilson Toussile.
Dominique Bontemps and Wilson Toussile (2013) : Clustering and variable selection for categorical multivariate data. Electronic Journal of Statistics, Volume 7, 2344-2371, ISSN.
Wilson Toussile and Elisabeth Gassiat (2009) : Variable selection in model-based clustering using multilocus genotype data. Adv Data Anal Classif, Vol 3, number 2, 109-134.
setEmOptions
for setting EM options.
1 2 3 4 5 | EmOptions()
setEmOptions(list(epsi = 1e-6))
EmOptions()
setEmOptions() # To set default values
EmOptions()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.