Nothing
calculateB <- function(Covariates, K, nDepVar, A, Sigma, N, NewPredictableObs, X, Y, Lags, FZY, qqq, B)
{
#if(Covariates == "equal-within-clusters"){# B(0): equal-within-clusters
for(j in 1:K)
{
Bnum = 0
Bdenom = 0
Delta = cbind(diag(nDepVar), (-1) * A[ , 1:(nDepVar * Lags[j]), j])
NewCovaMat = t(Delta) %*% MASS::ginv(Sigma[, , j]) %*% Delta
for(i in 1:N)
{
Bn = 0
Bd = 0
for(trunner in c(NewPredictableObs[[ Lags[j] ]][[i]]) )
{
XtildaKron <- kronecker(t(X[ , (trunner):(trunner - Lags[j]), drop = FALSE]),
diag(nDepVar)) # drop = FALSE is needed here in case of q = 1
Bd = Bd + ( t(XtildaKron) %*% NewCovaMat %*% XtildaKron )
Bn = Bn + ( t(XtildaKron) %*% NewCovaMat %*%
as.vector(Y[ , (trunner):(trunner - Lags[j]), drop = FALSE]) )
}
Bnum = Bnum + (FZY[ i, j] * Bn)
Bdenom = Bdenom + (FZY[ i, j] * Bd)
}
BasVec = MASS::ginv(Bdenom) %*% Bnum
B[, , j] = matrix(BasVec, nrow = nDepVar, ncol = qqq, byrow = FALSE)
}
#}
invisible(B)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.