Nothing
# ColombiAPI - Access Colombian Data via APIs and Curated Datasets
# Version 0.3.1
# Copyright (C) 2025 Renzo Caceres Rossi
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# get_colombia_population
library(testthat)
test_that("get_colombia_population() returns a tibble with the correct structure and content", {
result <- get_colombia_population()
# Check that the result is not NULL
expect_false(is.null(result))
# Check that the result is a data.frame/tibble
expect_s3_class(result, "data.frame")
# Check that the column names are exactly as expected
expect_named(result, c("indicator", "country", "year", "value", "value_label"))
# Check data types of each column
expect_type(result$indicator, "character")
expect_type(result$country, "character")
expect_type(result$year, "integer")
expect_type(result$value, "integer")
expect_type(result$value_label, "character")
# Check that the indicator column contains only the expected value
expect_true(all(result$indicator == "Population, total"))
# Check that the country column contains only "Colombia"
expect_true(all(result$country == "Colombia"))
# Check that the year range is correct (2010-2022)
expect_true(all(result$year >= 2010 & result$year <= 2022))
# Check that the number of rows is 13 (2010–2022)
expect_equal(nrow(result), 13)
# Check that there are exactly 5 columns
expect_equal(ncol(result), 5)
})
test_that("get_colombia_population() returns data for years 2010 to 2022", {
result <- get_colombia_population()
# Check that all years from 2010 to 2022 are present
expect_true(all(result$year %in% 2010:2022))
expect_equal(sort(unique(result$year)), 2010:2022)
})
test_that("get_colombia_population() year column has no NA values", {
result <- get_colombia_population()
# Year column should not contain NA values
expect_false(any(is.na(result$year)))
})
test_that("get_colombia_population() value column allows NA values", {
result <- get_colombia_population()
# Value column can contain NA values (as they are valid API responses)
expect_true(all(is.finite(result$value) | is.na(result$value)))
# Accept that some values may be NA (valid API responses)
expect_true(any(is.na(result$value)) || all(!is.na(result$value)))
})
test_that("get_colombia_population() years are sorted in descending order", {
result <- get_colombia_population()
# Check that years are in descending order (2022 to 2010)
expect_equal(result$year, sort(result$year, decreasing = TRUE))
})
test_that("get_colombia_population() indicator and country are consistent across rows", {
result <- get_colombia_population()
# Check that indicator is consistent across all rows
expect_equal(length(unique(result$indicator)), 1)
# Check that country is consistent across all rows
expect_equal(length(unique(result$country)), 1)
})
test_that("get_colombia_population() returns exactly 13 rows for the specified period", {
result <- get_colombia_population()
# Verify exactly 13 rows (2010-2022 inclusive)
expect_equal(nrow(result), 13)
})
test_that("get_colombia_population() non-NA values are positive numbers", {
result <- get_colombia_population()
# Filter out NA values and check that remaining values are positive
non_na_values <- result$value[!is.na(result$value)]
if (length(non_na_values) > 0) {
expect_true(all(non_na_values > 0))
}
})
test_that("get_colombia_population() value_label is formatted with commas", {
result <- get_colombia_population()
# Check that value_label contains commas (as shown in sample data)
non_na_labels <- result$value_label[!is.na(result$value)]
if (length(non_na_labels) > 0) {
expect_true(all(grepl(",", non_na_labels)))
}
})
test_that("get_colombia_population() value_label corresponds to value column", {
result <- get_colombia_population()
# For non-NA values, check that value_label is a formatted version of value
non_na_rows <- !is.na(result$value)
if (any(non_na_rows)) {
values <- result$value[non_na_rows]
labels <- result$value_label[non_na_rows]
# Remove commas from labels and convert to integer for comparison
labels_as_numbers <- as.integer(gsub(",", "", labels))
expect_equal(values, labels_as_numbers)
}
})
test_that("get_colombia_population() value column is integer", {
result <- get_colombia_population()
# Check that value column is integer (as shown in sample data)
expect_true(is.integer(result$value))
})
test_that("get_colombia_population() non-NA population values are within reasonable range", {
result <- get_colombia_population()
# Filter out NA values and check reasonable range for Colombia's population
non_na_values <- result$value[!is.na(result$value)]
if (length(non_na_values) > 0) {
expect_true(all(non_na_values >= 30000000)) # Minimum reasonable population for Colombia
expect_true(all(non_na_values <= 70000000)) # Maximum reasonable population for Colombia
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.