Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(Colossus)
library(data.table)
library(parallel)
## -----------------------------------------------------------------------------
names <- c("a", "b", "c", "d")
term_n <- c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
a_n <- c(0.1, 0.1, 0.1, 0.1)
## -----------------------------------------------------------------------------
df <- data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
"a" = c(0, 1, 1, 0, 1, 0, 1),
"b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
"c" = c(10, 11, 10, 11, 12, 9, 11),
"d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
time1 <- "Starting_Age"
time2 <- "Ending_Age"
event <- "Cancer_Status"
# Supposing we had left truncated data the following would change
time1 <- "Starting_Age"
time2 <- "%trunc%"
# and with right truncated data the following is used
time1 <- "%trunc%"
time2 <- "Ending_Age"
# setting back to normal
time1 <- "Starting_Age"
time2 <- "Ending_Age"
## -----------------------------------------------------------------------------
df$Person_Years <- df$Ending_Age - df$Starting_Age
pyr <- "Person_Years"
event <- "Cancer_Status"
## -----------------------------------------------------------------------------
keep_constant <- c(0, 0, 0, 0)
control <- list(
"ncores" = 1, "lr" = 0.75, "maxiter" = 100, "halfmax" = 5, "epsilon" = 1e-3,
"dbeta_max" = 0.5, "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
"dose_abs_max" = 100.0, "verbose" = 2, "ties" = "breslow", "double_step" = 1
)
## -----------------------------------------------------------------------------
# assuming the table of covariates is stored in a data.table "df"
e <- RunCoxRegression(
df, time1, time2, event, names, term_n, tform, keep_constant,
a_n, modelform, control
)
Interpret_Output(e)
# or a Poisson model regression
a_n <- c(0.1, 0.1, 0.1, 0.1) # a_n is updated when either regression is called
e <- RunPoissonRegression(
df, pyr, event, names, term_n, tform, keep_constant, a_n,
modelform,
control = control
)
Interpret_Output(e)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.