Nothing
test_that("Coxph multidose", {
fname <- "ll_comp_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))
time1 <- "t0"
time2 <- "t1"
# df$censor <- (df$lung==0)
df$lung <- (df$lung > 0)
# event <- "censor"
names <- c("dose", "rand")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)
realization_index <- c("rand")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
cens_weight <- c(0)
#
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
verbose <- FALSE
j_iterate <- 1
LL_comp_1 <- c(-450.7215, -450.7215, -382.8276, -382.8276)
LL_comp_2 <- c(-449.5319, -449.5319, -381.6798, -381.6798)
LL_comp_3 <- c(-450.8742, -450.8742, -382.8966, -382.8966)
k <- 1
for (i in c(FALSE, TRUE)) {
for (j in c(FALSE, TRUE)) {
model_control <- list("strata" = i, "basic" = j)
if (verbose) {
print(model_control)
}
a_n <- c(-0.1, -0.1)
# expect_equal(0,0)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
e <- RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null")
val <- e$LogLik
expect_equal(LL_comp_1[k], val[1], tolerance = 1e-4)
expect_equal(LL_comp_2[k], val[2], tolerance = 1e-4)
expect_equal(LL_comp_3[k], val[3], tolerance = 1e-4)
k <- k + 1
}
}
})
test_that("Coxph multidose negative shift check", {
fname <- "ll_comp_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- -1 * df$rand1
time1 <- "t0"
time2 <- "t1"
# df$censor <- (df$lung==0)
df$lung <- (df$lung > 0)
# event <- "censor"
names <- c("dose", "rand")
term_n <- c(0, 0)
tform <- c("loglin", "plin")
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)
realization_index <- c("rand")
keep_constant <- c(0, 0)
a_n <- c(0, 0)
modelform <- "M"
cens_weight <- c(0)
#
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
model_control <- list()
# expect_equal(0,0)
control <- list("ncores" = 2, "lr" = 0.95, "maxiter" = 20, "halfmax" = 5, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
e <- RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null")
val <- e$LogLik
expect_equal(c(-450.7240, -449.4633, -449.4633), val, tolerance = 1e-4)
})
test_that("Coxph multidose, extra warnings and checks", {
fname <- "ll_comp_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))
#
df$weighting <- floor(runif(nrow(df), min = 0, max = 2))
time1 <- "t0"
time2 <- "t1"
# df$censor <- (df$lung==0)
df$lung <- (df$lung > 0)
# event <- "censor"
names <- c("dose", "rand")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)
realization_index <- c("rand")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
cens_weight <- c(0)
#
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
options(warn = -1)
verbose <- FALSE
j_iterate <- 1
# LL_comp <- c(-69.51585, -69.51585, -77.97632, -77.97632, -59.95167, -60.05273, -75.34028, -75.3691, -69.51585, -69.51585, -77.97632, -77.97632, -59.95167, -60.05273, -75.34028, -75.3691, -111.3009, -111.3009, -119.9814, -119.9814, -100.8329, -101.007, -117.0147, -117.0539, -111.3009, -111.3009, -119.9814, -119.9814, -100.8329, -101.007, -117.0147, -117.0539)
model_control <- list("cr" = TRUE)
a_n <- c(-0.1, -0.1)
# expect_equal(0,0)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
expect_no_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "weighting"))
expect_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "bad_weighting"))
#
keep_constant <- c(1, 1)
expect_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "bad_weighting"))
keep_constant <- c(0, 0)
#
names <- c("CONST", "rand")
expect_no_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "weighting"))
names <- c("dose", "rand")
#
model_control <- list("strata" = TRUE)
d <- df[1, ]
d$fac <- 101
d$lung <- 0
df <- rbind(df, d)
expect_no_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "weighting"))
})
test_that("Coxph multidose failures", {
fname <- "ll_comp_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))
time1 <- "t0"
time2 <- "t1"
# df$censor <- (df$lung==0)
df$lung <- (df$lung > 0)
# event <- "censor"
names <- c("dose", "rand")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)
realization_index <- c("rand")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
cens_weight <- c(0)
#
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
verbose <- FALSE
j_iterate <- 1
model_control <- list("strata" = FALSE, "basic" = FALSE)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)
realization_index <- c("rand", "more_rand")
expect_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null"))
realization_columns <- matrix(c("rand0", "rand1", "bad"), nrow = 1)
realization_index <- c("rand")
expect_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null"))
realization_columns <- matrix(c("rand0", "rand1"), nrow = 1)
realization_index <- c("rand")
names <- c("bad", "rand")
expect_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null"))
names <- c("dose", "rand")
df$lung <- 0
expect_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null"))
})
test_that("Coxph multidose model failures", {
fname <- "ll_comp_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))
time1 <- "t0"
time2 <- "t1"
# df$censor <- (df$lung==0)
df$lung <- (df$lung > 0)
# event <- "censor"
names <- c("dose", "rand")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)
realization_index <- c("rand")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
cens_weight <- c(0)
#
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
verbose <- FALSE
j_iterate <- 1
model_control <- list("strata" = FALSE, "basic" = FALSE)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
model_control <- list("single" = TRUE, "basic" = FALSE)
expect_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null"))
model_control <- list("null" = TRUE, "basic" = FALSE)
expect_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null"))
model_control <- list("gradient" = TRUE, "basic" = FALSE)
expect_no_error(RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null"))
})
test_that("Coxph multidose MCML repeated column", {
fname <- "ll_comp_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))
time1 <- "t0"
time2 <- "t1"
# df$censor <- (df$lung==0)
df$lung <- (df$lung > 0)
# event <- "censor"
names <- c("dose", "rand")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
realization_columns <- matrix(c("rand0"), nrow = 1)
realization_index <- c("rand")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
cens_weight <- c(0)
#
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
verbose <- FALSE
model_control <- list("mcml" = TRUE)
a_n <- c(-0.1, -0.1)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
e0 <- RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null")
realization_columns <- matrix(c("rand0", "rand0"), nrow = 1)
a_n <- c(-0.1, -0.1)
e1 <- RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null")
expect_equal(e0$LogLik, e1$LogLik, tolerance = 1e-4)
})
test_that("Coxph multidose MCML swapped columns", {
fname <- "ll_comp_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))
time1 <- "t0"
time2 <- "t1"
# df$censor <- (df$lung==0)
df$lung <- (df$lung > 0)
# event <- "censor"
names <- c("dose", "rand")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
realization_columns <- matrix(c("rand1", "rand0"), nrow = 1)
realization_index <- c("rand")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
cens_weight <- c(0)
#
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
verbose <- FALSE
model_control <- list("mcml" = TRUE)
a_n <- c(-0.1, -0.1)
control <- list("ncores" = 2, "lr" = 0.75, "maxiter" = 10, "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
e0 <- RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null")
realization_columns <- matrix(c("rand0", "rand1"), nrow = 1)
a_n <- c(-0.1, -0.1)
e1 <- RunCoxRegression_Omnibus_Multidose(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, realization_columns = realization_columns, realization_index = realization_index, control = control, strat_col = "fac", model_control = model_control, cens_weight = "null")
expect_equal(e0$LogLik, e1$LogLik, tolerance = 1e-4)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.