Nothing
#' Explore and tidy raw data
#'
#' @description Removes not binary columns from multivariate time series data and calculates a table of relative frequency and auto-dependency for each binary variable
#'
#' @param data Binary time-points-by-variable matrix
#' @return A conData-object including:
#' @return \code{data} Binary data in time points to variable format.
#' @return \code{probs} Table of relative frequency and auto-dependence for each variable.
#' @return \code{varNames} The names of all variables.
#'
#' @export
#'
#' @examples
#' ExampleData <- cbind(rep(c(0,1),100),
#' rep(c(0,0,0,0,0,1,1,1,1,1),20),
#' c(
#' rep(c(0,0,0,1,1),20),
#' rep(c(0,1,1,1,1),20)
#' ),
#' ifelse(rnorm(200,0,1)<0.95,1,0),
#' c(
#' ifelse(rnorm(100,0,1)<0.7,1,0),
#' ifelse(rnorm(100,0,1)<0.7,0,1)
#' ),
#' ifelse(rnorm(200,0,1)<(-0.98),1,0))
#' colnames(ExampleData) <- c('Var 1','Var 2','Var 3',
#' 'Var 4','Var 5','Var 6')
#' conData(ExampleData)
#'
#' @examples data(SymptomData)
#' Sdata <- conData(SymptomData)
#' Sdata$probs
#'
conData <- function(data){
nTpoints <- nrow(data)
raw_data <- data
nonBinary <- which(data!=1 & data!=0 & !is.na(data))
nonBinaryCols <- unique(ceiling(nonBinary/nTpoints))
if(length(nonBinaryCols)!=0){
raw_data <- data[,-nonBinaryCols]
}
complete_data <- raw_data[complete.cases(raw_data),]
nvars <- ncol(complete_data)
varNames <- colnames(complete_data)
table <- t(array(unlist(apply(complete_data,2,getProb)), dim=c(3,nvars)))
colnames(table) <- c("rel.freq","p1|1", "p1|0")
rownames (table)<- varNames
result <- list(raw_data,table,varNames)
names(result) <- c('data','probs','varNames')
class(result) <- 'conData'
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.