Nothing
hatvalues.CountsEPPM <-
function (model, ...) {
x <- model$covariates.matrix.mean
if (NCOL(x) < 1L)
return(structure(rep.int(0, NROW(x)), .Names = rownames(x)))
if (is.null(model$offset$mean)) { offset.mean <- rep(0, NROW(x)) }
wts <- weights(model$model)
if (is.null(wts)) { wts <- rep(1, NROW(x)) }
beta <- model$coefficients$mean.est[1:ncol(x)]
eta <- as.vector(x %*% beta + offset.mean)
vone <- rep(1,length(eta))
# inverse of link function
mean <- attr(model$link, which="mean")$linkinv(eta)
# modeling scalefactor
if (model$model.type=="mean only") { scale.factor <- matrix(rep.int(1, NROW(x)), ncol=1)
} else {
z <- model$covariates.matrix.scalef
if (is.null(model$offset$scalef)) { offset.scalef <- rep(0, NROW(z)) }
gamma <- model$coefficients$scalef.est[1:ncol(z)]
scale.factor_eta <- as.vector(z %*% gamma + offset.scalef)
scale.factor <- exp(scale.factor_eta) } # end if model.type
vvariance <- mean*scale.factor
# first differential of mean w.r.t. eta (linear predictor)
dmu <- attr(model$link, which="mean")$mu.eta(eta)
# constructing a vector of cases from the list of groups
if (model$data.type==TRUE) {
wk.mean <- mean
wk.wts <- wts
wk.vvariance <- vvariance
wk.dmu <- dmu
wk.x <- x
} else {
wks <- length(x[1,])
nend <- 0
for (ilist in 1:length(model$list.data)) {
for ( i in 1:length(model$list.data[[ilist]])) {
nt <- model$list.data[[ilist]][i]
if (nt>0) {
if (nend==0) {
wk.x <- as.vector(c(rep(x[ilist,],nt)))
wk.mean <- c(rep(mean[ilist],nt))
wk.wts <- c(rep(wts[ilist],nt))
wk.vvariance <- c(rep(vvariance[ilist],nt))
wk.dmu <- c(rep(dmu[ilist],nt))
} else {
wk.x <- append(wk.x, as.vector(c(rep(x[ilist,],nt))), after=(nend*wks))
wk.mean <- append(wk.mean, c(rep(mean[ilist],nt)), after=nend)
wk.wts <- append(wk.wts, c(rep(wts[ilist],nt)), after=nend)
wk.vvariance <- append(wk.vvariance, c(rep(vvariance[ilist],nt)), after=nend)
wk.dmu <- append(wk.dmu, c(rep(dmu[ilist],nt)), after=nend) }
nend <- nend + nt } } # end of for i loop
} # end of for ilist loop
wk.x <- t(matrix(wk.x, nrow=wks))
} # end of if model$data.type
wkm <- sqrt(as.vector(wk.wts * wk.dmu * wk.dmu / wk.vvariance)) * wk.x
xwx1 <- chol2inv(qr.R(qr(wkm)))
as.vector(diag(wkm %*% xwx1 %*% t(wkm))) }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.