View source: R/kernel_regression_estimator.R
adjusted_est | R Documentation |
This function computes the kernel regression estimator of the autocovariance function.
adjusted_est(
X,
x,
t,
b,
kernel_name = "gaussian",
kernel_params = c(),
pd = TRUE,
type = "autocovariance",
meanX = mean(X),
custom_kernel = FALSE
)
X |
A vector representing observed values of the time series. |
x |
A vector of lags. |
t |
The arguments at which the autocovariance function is calculated at. |
b |
Bandwidth parameter, greater than 0. |
kernel_name |
The name of the symmetric kernel (see kernel_symm) function to be used. Possible values are: gaussian, wave, rational_quadratic, and bessel_j. Alternatively, a custom kernel function can be provided, see the examples. |
kernel_params |
A vector of parameters of the kernel function. See kernel_symm for parameters. |
pd |
Whether a positive-definite estimate should be used. Defaults to |
type |
Compute either the 'autocovariance' or 'autocorrelation'. Defaults to 'autocovariance'. |
meanX |
The average value of |
custom_kernel |
If a custom kernel is to be used or not. Defaults to |
The kernel regression estimator of an autocovariance function is defined as
\hat{\rho}(t) = \left( \sum_{i=1}^{N} \sum_{j=1}^{N} \check{X}_{ij} K((t - (t_{i} - t_{j})) / b) \right) \left( \sum_{i=1}^{N} \sum_{j=1}^{N} K((t - (t_{i} - t_{j})) / b) \right)^{-1},
where \check{X}_{ij} = (X(t_{i}) - \bar{X}) (X(t_{j}) - \bar{X}).
If pd
is TRUE
, the estimator will be made positive-definite through the following procedure
Take the discrete Fourier cosine transform,
\widehat{\mathcal{F}}(\theta)
, of the estimated autocovariance function
Compute a modified spectrum \widetilde{\mathcal{F}}(\theta) = \max(\widehat{\mathcal{F}}(\theta), 0)
for all sample frequencies.
Perform the Fourier inversion to obtain a new estimator.
A vector whose values are the kernel regression estimates.
Hall, P. & Patil, P. (1994). Properties of nonparametric estimators of autocovariance for stationary random fields. Probability Theory and Related Fields 99(3), 399-424. https://doi.org/10.1007/bf01199899
Hall, P., Fisher, N. I., & Hoffmann, B. (1994). On the nonparametric estimation of covariance functions. The Annals of Statistics 22(4), 2115-2134. https://doi.org/10.1214/aos/1176325774
X <- c(1, 2, 3, 4)
adjusted_est(X, 1:4, 1:3, 0.1, "gaussian")
my_kernel <- function(x, theta, params) {
stopifnot(theta > 0, length(x) >= 1)
return(exp(-((abs(x) / theta)^params[1])) * (2 * theta * gamma(1 + 1/params[1])))
}
adjusted_est(X, 1:4, 1:3, 0.1, my_kernel, c(0.25), custom_kernel = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.