View source: R/kernel_regression_estimator.R
rho_T1 | R Documentation |
\rho(T_{1})
used in the Truncated Kernel Regression Estimator.This helper function computes \rho(T_{1})
used in the truncated kernel regression estimator, truncated_est.
rho_T1(
x,
meanX,
T1,
b,
xij_mat,
kernel_name = "gaussian",
kernel_params = c(),
custom_kernel = FALSE
)
x |
A vector of lags. |
meanX |
The average value of |
T1 |
The first trunctation point. |
b |
Bandwidth parameter, greater than 0. |
xij_mat |
The matrix of pairwise covariance values. |
kernel_name |
The name of the symmetric kernel (see kernel_symm) function to be used. Possible values are: gaussian, wave, rational_quadratic, and bessel_j. Alternatively, a custom kernel function can be provided, see the examples. |
kernel_params |
A vector of parameters of the kernel function. See kernel_symm for parameters. |
custom_kernel |
If a custom kernel is to be used or not. Defaults to |
This function computes the following value,
\hat{\rho}(T_{1}) = \left( \sum_{i=1}^{N} \sum_{j=1}^{N} \check{X}_{ij} K((T_{1} - (t_{i} - t_{j})) / b) \right) \left( \sum_{i=1}^{N} \sum_{j=1}^{N} K((T_{1} - (t_{i} - t_{j}))) / b) \right)^{-1},
where \check{X}_{ij} = (X(t_{i}) - \bar{X}) (X(t_{j}) - \bar{X}),
which is then used in truncated_est,
\hat{\rho}_{1}(t) = \left\{ \begin{array}{ll}
\hat{\rho}(t) & 0 \leq t \leq T_{1} \\
\hat{\rho}(T_{1}) (T_{2} - t)(T_{2} - T_{1})^{-1} & T_{1} < t \leq T_{2} \\
0 & t > T_{2}
\end{array} \right. .
The estimated autocovariance function at T_{1}
.
Hall, P. & Patil, P. (1994). Properties of nonparametric estimators of autocovariance for stationary random fields. Probability Theory and Related Fields 99(3), 399-424. https://doi.org/10.1007/bf01199899
Hall, P., Fisher, N. I., & Hoffmann, B. (1994). On the nonparametric estimation of covariance functions. The Annals of Statistics 22(4), 2115-2134. https://doi.org/10.1214/aos/1176325774
X <- c(1, 2, 3, 4)
rho_T1(1:4, mean(X), 1, 0.1, Xij_mat(X, mean(X)), "gaussian", c(), FALSE)
my_kernel <- function(x, theta, params) {
stopifnot(theta > 0, length(x) >= 1)
return(exp(-((abs(x) / theta)^params[1])) * (2 * theta * gamma(1 + 1/params[1])))
}
rho_T1(1:4, mean(X), 1, 0.1, Xij_mat(X, mean(X)), my_kernel, c(0.25), TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.