hilbert_schmidt | R Documentation |
This function computes the Hilbert-Schidmt norm between two estimated autocovariance functions.
hilbert_schmidt(est1, est2)
est1 |
A numeric vector representing the first estimated autocovariance function. |
est2 |
A numeric vector of the same length as |
This function computes the Hilbert-Schidmt norm between two estimated autocovariance functions. The Hilbert-Schmidt norm of a matrix
D = \left[(d_{i,j})_{1 \le i,j \le n}\right] = \left[ {\begin{array}{ccccc}
D(h_{0}) & D(h_{1}) & \cdots & D(h_{n - 1}) & D(h_{n}) \\
D(h_{1}) & D(h_{0}) & \cdots & D(h_{n - 2}) & D(h_{n - 1}) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
D(h_{n - 1}) & D(h_{n - 2}) & \cdots & D(h_{0}) & D(h_{1}) \\
D(h_{n}) & D(h_{n - 1}) & \cdots & D(h_{1}) & D(h_{0}) \\
\end{array}} \right] ,
over a set of lags \{h_{0}, h_{1}, \dots , h_{N} \},
where D(h) = \hat{C}_{1}(h) - \hat{C}_{2}(h),
is defined as
{\left\Vert D \right\Vert}_{HS} = \sqrt{\sum_{i,j} d_{i, j}^{2}}.
A numeric value representing the estimated Hilbert-Schmidt norm between two estimated autocovariance functions.
x <- seq(0, 5, by=0.1)
estCov1 <- exp(-x^2)
estCov2 <- exp(-x^2.1)
hilbert_schmidt(estCov1, estCov2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.