Nothing
#' Example data for btscs function
#'
#' A subset of data from Alvarez et. al. (1996).
#'
#'
#' @name aclp
#' @docType data
#' @format A data frame with 4126 observations on the following 7 variables.
#' \describe{ \item{cname}{Country name} \item{country}{Numeric
#' country identifier} \item{year}{Year of observation}
#' \item{reg}{A dichotomous variable coded 1 for dictatorship, 0 for
#' democracy} \item{gdpw}{GDP/worker, 1985 prices}
#' \item{popg}{Population growth} \item{democ}{A dichotomous
#' variable coded 1 for democracy, 0 for dictatorship, (1-\code{reg})} }
#' @references Alvarez, M., J.A. Cheibub, F. Limongi and A. Przeworski. 1996.
#' Classifying political regimes. Studies in Comparative International
#' Development 31 (Summer): 1-37.
#' @keywords datasets
NULL
#' Dave Armstrong's Miscellaneous Functions
#'
#' Functions to aid in the presentation of linear model results
#'
#' \tabular{ll}{ Package: \tab DAMisc\cr Type: \tab Package\cr Version: \tab
#' 1.4-8\cr Date: \tab 2018-05-16\cr License: \tab GPL (>=2)\cr LazyLoad: \tab
#' yes\cr } These are functions that help present linear model results.
#' Largely, the represent alternatives in presentation to other R packages.
#' For example, the \code{factorplot} function offers an alternative to David
#' Firth's \code{qvcalc} package. This function calculates and presents exact
#' variances of all simple contrasts. Both \code{DAintfun} and
#' \code{DAintfun2} are alternative ways of presenting interactions between two
#' continuous variables. \code{DAintfun2} gives results in line with the
#' suggestions in Brambor, Clark and Golder (2006).
#'
#' @name DAMisc-package
#' @aliases DAMisc-package DAMisc
#' @docType package
#' @author Dave Armstrong\cr Maintainer: Dave Armstrong
#' <davearmstrong.ps@@gmail.com>
#' @references Armstrong, D.A. (2013) factorplot: Improving Presentation of
#' Simple Contrasts in GLMs. The R Journal. 5, 4-15. Brambor, T., W.R. Clark
#' and M. Golder. (2006) Understanding Interaction Models: Improving Empirical
#' Analyses. Political Analysis 14, 63-82.\cr Berrym, W., M. Golder and D.
#' Milton. (2012) Improving Tests of Theories Positing Interaction. Journal
#' of Politics 74, 653-671.
#'
#' @importFrom clarkeTest clarke_test
#' @importFrom grDevices col2rgb dev.off pdf png
#' postscript rgb setEPS
#' @importFrom graphics abline axis lines par persp
#' plot points polygon box segments strwidth
#' @importFrom stats poisson AIC BIC alias anova as.formula
#' coef coefficients contrasts deviance dnorm
#' family fitted formula lm loess logLik
#' median model.frame model.matrix model.response
#' na.omit p.adjust pcauchy pchisq pf plogis
#' pnorm predict pt qt quantile relevel
#' residuals residuals.glm sd terms update
#' var vcov gaussian glm aggregate cooks.distance
#' cor hatvalues naprint nlminb pbinom printCoefmat
#' qnorm rnorm binomial get_all_vars t.test
#' chisq.test reorder optimize
#' @importFrom boot cv.glm boot
#' @importFrom coda as.mcmc
#' @importFrom latticeExtra useOuterStrips
#' @importFrom AICcmodavg AICc
#' @importFrom optiscale opscale
#' @importFrom utils combn
#' @importFrom effects Effect effect
#' @importFrom MASS mvrnorm polr kde2d glm.nb
#' @importFrom nnet multinom
#' @importFrom splines bs
#' @importFrom xtable xtable print.xtable
#' @importFrom ggplot2 ggplot geom_point aes geom_segment
#' theme_bw labs ggtitle geom_hline geom_ribbon geom_line
#' theme aes_string geom_bar labs ggtitle coord_polar
#' theme_void geom_text aes_string facet_wrap
#' @importFrom car Anova
#' @importFrom grid gpar grid.segments unit
#' @importFrom lattice histogram packet.number panel.abline panel.arrows
#' panel.lines panel.points panel.polygon panel.rug panel.segments
#' panel.superpose simpleKey trellis.focus trellis.par.get
#' trellis.unfocus xyplot
#' @importFrom haven is.labelled as_factor
#' @importFrom survey svymean svyvar svyquantile svyby svytable svychisq
#' svydesign cv svytotal
#' @importFrom janitor adorn_totals adorn_percentages adorn_pct_formatting
#' adorn_ns adorn_title
#' @importFrom tibble as_tibble
#' @importFrom tidyr pivot_wider
#' @importFrom magrittr "%>%"
#' @importFrom dplyr filter group_by summarise n mutate select
#' ungroup bind_cols
#' @importFrom tidyselect all_of
#' @importFrom rlang .data
#' @importFrom jtools svycor
NULL
#' Example data for factorplot function
#'
#' A subset of data from the 1994 Eurobarometer for France
#'
#'
#' @name france
#' @docType data
#' @format A data frame with 542 observations on the following 5 variables.
#' \describe{ \item{lrself}{respondent's left-right self-placement on a
#' 1(left)-10(right) scale} \item{male}{a dummy variable coded 1 for
#' males and 0 for females} \item{age}{respondent's age}
#' \item{vote}{a factor indicating vote choice with levels PCF, PS,
#' Green, RPR and UDF} \item{retnat}{a factor indicating the
#' respondent's retrospective national economic evaluation with levels Better,
#' Same and Worse} \item{voteleft}{a dichotomous variable where 1
#' indicates a vote for a left party, 0 otherwise} }
#' @references Reif, Karlheinz and Eric Marlier. 1997. \emph{Euro-barometer
#' 42.0: The First Year of the New European Union, November-December 1994}.
#' Inter-university Consortium for Political and Social Research (ICPSR)
#' [distributor].
#' @keywords datasets
NULL
#' Example Data for DAintfun
#'
#' Data to execute example code for \code{DAintfun}
#'
#' These are randomly generated data to highlight the functionality of
#' \code{DAintfun}
#'
#' @name InteractionEx
#' @docType data
#' @format A data frame with 500 observations on the following 4 variables.
#' \describe{ \item{y}{a numeric vector} \item{x1}{a numeric
#' vector} \item{x2}{a numeric vector} \item{z}{a numeric
#' vector} }
#' @keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.