View source: R/AlgoParamsDEMCMC.R
AlgoParamsDEMCMC | R Documentation |
AlgoParamsDEMCMC
AlgoParamsDEMCMC( n_params, n_chains = NULL, param_names = NULL, n_iter = 1000, init_sd = 0.01, init_center = 0, n_cores_use = 1, step_size = NULL, jitter_size = 1e-06, parallel_type = "none", burnin = 0, thin = 1 )
n_params |
number of free parameters estimated |
n_chains |
number of MCMC chains, 3*n_params is the default value |
param_names |
optional vector of parameter names |
n_iter |
number of iterations to run the sampling algorithm, 1000 is default |
init_sd |
positive scalar or n_params-dimensional numeric vector, determines the standard deviation of the Gaussian initialization distribution |
init_center |
scalar or n_params-dimensional numeric vector, determines the mean of the Gaussian initialization distribution |
n_cores_use |
number of cores used when using parallelization. |
step_size |
positive scalar, jump size in DE crossover step, default is 2.38/sqrt(2*n_params) which is optimal for multivariate Gaussian target distribution (ter Braak, 2006) |
jitter_size |
positive scalar, noise is added during crossover step from Uniform(-jitter_size,jitter_size) distribution. 1e-6 is the default value. |
parallel_type |
string specifying parallelization type. 'none','FORK', or 'PSOCK' are valid values. 'none' is default value. |
burnin |
number of initial iterations to discard. Default value is 0. |
thin |
positive integer, only every 'thin'-th iteration will be stored. Default value is 1. Increasing thin will reduce the memory required, while running chains for longer. |
list of control parameters for the DEMCMC function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.