DEVI | R Documentation |
DE optimization for mean-field variational inference. Minimizes the KL divergence (maximizes the ELBO) between $q(theta|lambda)$ and the target posterior $p(theta|data)$ For a tutorial on variational inference check out Galdo, Bahg, & Turner 2020.
DEVI(LogPostLike, control_params = AlgoParamsDEVI(), ...)
LogPostLike |
function whose first argument is an n_params-dimensional model parameter vector and returns (scalar) sum of log prior density and log likelihood for the parameter vector. |
control_params |
control parameters for DE algorithm. see |
... |
additional arguments to pass LogPostLike |
list contain mean in a n_iters_per_chain by n_chains by 2*n_params_model array and the ELBO of each sample in a n_iters_per_chain by n_chains array.
# simulate from model dataExample <- matrix(stats::rnorm(100, c(-1, 1), c(1, 1)), nrow = 50, ncol = 2, byrow = TRUE) ## list parameter names param_names_example <- c("mu_1", "mu_2") # log posterior likelihood function = log likelihood + log prior | returns a scalar LogPostLikeExample <- function(x, data, param_names) { out <- 0 names(x) <- param_names # log prior out <- out + sum(dnorm(x["mu_1"], 0, sd = 1, log = TRUE)) out <- out + sum(dnorm(x["mu_2"], 0, sd = 1, log = TRUE)) # log likelihoods out <- out + sum(dnorm(data[, 1], x["mu_1"], sd = 1, log = TRUE)) out <- out + sum(dnorm(data[, 2], x["mu_2"], sd = 1, log = TRUE)) return(out) } # Get variational approximation DEVI( LogPostLike = LogPostLikeExample, control_params = AlgoParamsDEVI( n_params = length(param_names_example), n_iter = 200, n_chains = 12 ), data = dataExample, param_names = param_names_example )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.