View source: R/AlgoParamsDEVI.R
| AlgoParamsDEVI | R Documentation | 
get control parameters for DEVI function
AlgoParamsDEVI( n_params, param_names = NULL, n_chains = NULL, n_iter = 1000, init_sd = 0.01, init_center = 0, n_cores_use = 1, step_size = NULL, jitter_size = 1e-06, parallel_type = "none", use_QMC = TRUE, purify = NULL, quasi_rand_seq = "halton", n_samples_ELBO = 10, LRVB_correction = TRUE, n_samples_LRVB = 25, neg_inf = -750, thin = 1, burnin = 0, return_trace = FALSE, crossover_rate = 1 )
n_params | 
 number of free parameters estimated  | 
param_names | 
 optional vector of parameter names  | 
n_chains | 
 number of particle chains used for optimization, 3*n_params is the default value  | 
n_iter | 
 number of iterations to run the sampling algorithm, 1000 is default  | 
init_sd | 
 positive scalar or n_params-dimensional numeric vector, determines the standard deviation of the Gaussian initialization distribution  | 
init_center | 
 scalar or n_params-dimensional numeric vector, determines the mean of the Gaussian initialization distribution  | 
n_cores_use | 
 number of cores used when using parallelization.  | 
step_size | 
 positive scalar, jump size in DE crossover step, default is 2.38/sqrt(2*n_params).  | 
jitter_size | 
 positive scalar, noise is added during crossover step from Uniform(-jitter_size,jitter_size) distribution. 1e-6 is the default value.  | 
parallel_type | 
 string specifying parallelization type. 'none','FORK', or 'PSOCK' are valid values. 'none' is default value.  | 
use_QMC | 
 logical, if true, a quasi-Monte Carlo estimator is used to estimate ELBO during optimization. default is TRUE.  | 
purify | 
 an integer, every 'purify'-th iteration, the Monte Carlo estimator of the ELBO is recalculated. This can help deal with noisy and outlier estimates of the ELBO. Default value is 25. If use_QMC is TRUE, purification is disabled as it is redundant.  | 
quasi_rand_seq | 
 type of low discrepancy sequence used for quasi Monte Carlo integration, either 'sobol' or 'halton'. LRVB correction always use QMC. Default is 'sobol'.  | 
n_samples_ELBO | 
 number of samples used for the Monte Carlo estimator of the ELBO (the objective function). default is 10.  | 
LRVB_correction | 
 logical, if true, LRVB covariance correction (Giordano, Brodderick, & Jordan 2018; Galdo, Bahg, & Turner 2020) is attempted.  | 
n_samples_LRVB | 
 number of samples used for LRVB correction. default is 25.  | 
neg_inf | 
 if density for a given value of theta is numerically 0 for q, this value is assigned for log density. This helps with numeric stability of algorithm. Default value is -750.  | 
thin | 
 positive integer, only every 'thin'-th iteration will be stored. Default value is 1. Increasing thin will reduce the memory required, while running algorithm for longer.  | 
burnin | 
 number of initial iterations to discard. Default value is 0.  | 
return_trace | 
 logical, if true, function returns particle trajectories. This is helpful for diagnosing convergence or debugging model code. Function will return an iteration/thin $x$ n_chains $x$ n_params array and the estimated ELBO of each particle in a iteration/thin x n_chains array.  | 
crossover_rate | 
 number on the interval (0,1]. Determines the probability a parameter on a chain is updated on a given crossover step, sampled from a Bernoulli distribution.  | 
list of control parameters for the DEVI function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.