Description Usage Arguments Details Value Author(s) References See Also Examples
A function to perform DIFlasso, a method to detect DIF (Differential Item Functioning) in Rasch Models. It can handle settings with many covariates and also metric covariates. The method is described in Tutz and Schauberger (2015).
1 2 |
Y |
Data frame (one row per person, one column per item) containing response. May only contain 0 or 1. |
X |
Data frame (one row per person, one column per covariate) containing covariates. Has to be standardized. |
l.lambda |
Length of the grid of tuning parameters for DIFlasso. Default is 20 different tuning parameters. |
grouped |
Should all parameters corresponding to one item be grouped? If |
trace |
Should the trace of the |
df.type |
Specifies the type of degrees of freedom. Default is to the definition of degrees of freedom by Yuan and Lin (2006).
If |
The method assumes the DIFmodel from Tutz and Schauberger (2015) where a Group Lasso penalty is used for DIF detection. Computation is based on the function grplasso
.
theta |
Estimated person abilities; one row per person, one column per tuning parameter |
beta |
Estimated item difficulties; one row per item, one column per tuning parameter |
gamma |
Estimated item-specific parameters; one row per item and covariate, one column per tuning parameter (first line: first item, first covariate; second line: first item, second covariate and so on) |
P |
Number of (valid) persons; removed persons are found in removed.persons |
I |
Number of items |
m |
Number of covariates |
logLik |
Log-likelihood |
BIC |
BIC |
AIC |
AIC |
df |
Degrees of freedom |
refit.matrix |
Design matrix for function |
lambda |
Sequence of tuning parameters used by |
ref.item |
Reference item |
dif.mat |
Estimates of the item-specific parameter estimates (at BIC-optimal lambda) |
dif.items |
Which items have been detected to be DIF items (at BIC-optimal lambda)? |
names.y |
Names of the items |
names.x |
Names of the covariates |
removed.persons |
Which persons have been removed because they either solved no item or all items? |
Gunther Schauberger
gunther.schauberger@tum
https://www.sg.tum.de/epidemiologie/team/schauberger/
Tutz, Gerhard and Schauberger, Gunther (2015): A Penalty Approach to Differential Item Functioning in Rasch Models, Psychometrika, 80(1), 21 - 43
Yuan, Ming and Lin, Yi (2006): Model selection and estimation in regression with grouped variables,
Journal of the Royal Statistical Society B, 68(1), 49 - 67
refitDIFlasso
, plot.DIFlasso
, print.DIFlasso
, grplasso
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## Not run:
data(simul.data)
Y <- simul.data[,1:10]
X <- simul.data[,11:13]
m1 <- DIFlasso(Y = Y, X = X, trace = TRUE)
print(m1)
plot(m1)
m2 <- refitDIFlasso(m1)
print(m2)
plot(m2)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.