DECME: DECME

View source: R/DECME.R

DECMER Documentation

DECME

Description

The DECME algorithm can significantly improve the speed of processing large-scale data sets. It can reduce the algorithm's memory requirements, enabling the algorithm to handle larger data sets.

Usage

DECME(data,df1,M,maxiter)

Arguments

data

The real data sets with missing data used in the method

df1

The real data sets used in the method

M

The number of Blocks

maxiter

The maximum number of iterations

Value

Y011

The response variable value after projection for each block

Yhat

The estimated response variable value after projection for each block

Ymean

The mean of response variable value after projection for each block

Yhatmean

The mean of response variable value after projection for each block

Author(s)

Guangbao Guo,Yu Li

Examples

set.seed(99)
library(MASS)
library(mvtnorm)
n=50;p=6;q=5;M=2;omega=0.15;ratio=0.1;maxiter=15;nob=round(n-(n*ratio))
dd.start=1;sigma2_e.start=1
X0=matrix(runif(n*p,0,2),ncol=p)
beta=matrix(rnorm(p*1,0,3),nrow=p)
Z0=matrix(runif(n*q,2,3),ncol=q)
e=matrix(rnorm(n*1,0,sigma2_e.start),n,1)
b=matrix(rnorm(q*1,0,1),q,1)
Y0=X0
df1=data.frame(Y=Y0,X=X0,Z=Z0)
misra=function(data,ratio){
  nob=round(n-(n*ratio))
  data[sample(n,n-nob),1]=NA
  return(data)}
data=misra(data=df1,ratio=0.1)
DECME(data,df1,M=2,maxiter=15)

DIRMR documentation built on April 3, 2025, 6:03 p.m.

Related to DECME in DIRMR...