DPXEM: DPXEM

View source: R/DPXEM.R

DPXEMR Documentation

DPXEM

Description

The DPXEM method is mainly used for clustering analysis of large-scale datasets. It distributes the dataset across different computing nodes, processes the data in parallel, and updates model parameters. Through parallel processing, the DPXEM algorithm can significantly improve the speed of processing large-scale datasets.

Usage

DPXEM(data,df1,M,maxiter)

Arguments

data

The real data sets with missing data used in the method

df1

The real data sets used in the method

M

The number of Blocks

maxiter

The maximum number of iterations

Value

Y011

The response variable value after projection for each block

Yhat

The estimated response variable value after projection for each block

Ymean

The mean of response variable value after projection for each block

Yhatmean

The mean of response variable value after projection for each block

Author(s)

Guangbao Guo,Yu Li

Examples

set.seed(99)
library(MASS)
library(mvtnorm)
n=50;p=6;q=5;M=2;omega=0.15;ratio=0.1;maxiter=15;nob=round(n-(n*ratio))
dd.start=1;sigma2_e.start=1
X0=matrix(runif(n*p,0,2),ncol=p)
beta=matrix(rnorm(p*1,0,3),nrow=p)
Z0=matrix(runif(n*q,2,3),ncol=q)
e=matrix(rnorm(n*1,0,sigma2_e.start),n,1)
b=matrix(rnorm(q*1,0,1),q,1)
Y0=X0
df1=data.frame(Y=Y0,X=X0,Z=Z0)
misra=function(data,ratio){
  nob=round(n-(n*ratio))
  data[sample(n,n-nob),1]=NA
  return(data)}
data=misra(data=df1,ratio=0.1)
DPXEM(data,df1,M=2,maxiter=15)

DIRMR documentation built on April 3, 2025, 6:03 p.m.

Related to DPXEM in DIRMR...