PXEM | R Documentation |
The PXEM method is an algorithm that accelerates the convergence rate of the EM algorithm. By introducing additional parameters, improving the model, and expanding it, it has better parameter estimation results compared to the EM method.
PXEM(data,df1,maxiter)
data |
The real data sets with missing data used in the method |
df1 |
The real data sets used in the method |
maxiter |
The maximum number of iterations |
Y01 |
The response variable value after projection |
Yhat |
The estimated response variable value after projection |
Guangbao Guo,Yu Li
set.seed(99)
library(MASS)
library(mvtnorm)
n=50;p=6;q=5;M=2;omega=0.15;ratio=0.1;maxiter=15;nob=round(n-(n*ratio))
dd.start=1;sigma2_e.start=1
X0=matrix(runif(n*p,0,2),ncol=p)
beta=matrix(rnorm(p*1,0,3),nrow=p)
Z0=matrix(runif(n*q,2,3),ncol=q)
e=matrix(rnorm(n*1,0,sigma2_e.start),n,1)
b=matrix(rnorm(q*1,0,1),q,1)
Y0=X0
df1=data.frame(Y=Y0,X=X0,Z=Z0)
misra=function(data,ratio){
nob=round(n-(n*ratio))
data[sample(n,n-nob),1]=NA
return(data)}
data=misra(data=df1,ratio=0.1)
PXEM(data,df1,maxiter=15)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.