PXEM: PXEM

View source: R/PXEM.R

PXEMR Documentation

PXEM

Description

The PXEM method is an algorithm that accelerates the convergence rate of the EM algorithm. By introducing additional parameters, improving the model, and expanding it, it has better parameter estimation results compared to the EM method.

Usage

PXEM(data,df1,maxiter)

Arguments

data

The real data sets with missing data used in the method

df1

The real data sets used in the method

maxiter

The maximum number of iterations

Value

Y01

The response variable value after projection

Yhat

The estimated response variable value after projection

Author(s)

Guangbao Guo,Yu Li

Examples

set.seed(99)
library(MASS)
library(mvtnorm)
n=50;p=6;q=5;M=2;omega=0.15;ratio=0.1;maxiter=15;nob=round(n-(n*ratio))
dd.start=1;sigma2_e.start=1
X0=matrix(runif(n*p,0,2),ncol=p)
beta=matrix(rnorm(p*1,0,3),nrow=p)
Z0=matrix(runif(n*q,2,3),ncol=q)
e=matrix(rnorm(n*1,0,sigma2_e.start),n,1)
b=matrix(rnorm(q*1,0,1),q,1)
Y0=X0
df1=data.frame(Y=Y0,X=X0,Z=Z0)
misra=function(data,ratio){
  nob=round(n-(n*ratio))
  data[sample(n,n-nob),1]=NA
  return(data)}
data=misra(data=df1,ratio=0.1)
PXEM(data,df1,maxiter=15)

DIRMR documentation built on April 3, 2025, 6:03 p.m.

Related to PXEM in DIRMR...