Nothing
## ---- include=FALSE-----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
options(crayon.enabled = TRUE)
ansi_aware_handler <- function(x, options)
{
paste0(
"<pre class=\"r-output\"><code>",
fansi::sgr_to_html(x = x, warn = FALSE, term.cap = "256"),
"</code></pre>"
)
}
old_hooks <- fansi::set_knit_hooks(knitr::knit_hooks,
which = c("output", "message", "error", "warning"))
knitr::knit_hooks$set(
output = ansi_aware_handler,
message = ansi_aware_handler,
warning = ansi_aware_handler,
error = ansi_aware_handler
)
## ----setup, message=FALSE, warning=FALSE--------------------------------------
library(DImodelsMulti)
library(dplyr)
library(nlme)
library(ggplot2)
## ----data_head----------------------------------------------------------------
head(simMVRM)
## ----data_group---------------------------------------------------------------
simMVRM_group <- dplyr::summarise(dplyr::group_by(simMVRM, time),
Y1 = mean(Y1),
Y2 = mean(Y2),
Y3 = mean(Y3),
MFindex = mean(Y1 + Y2 + Y3))
simMVRM_group
## ----data_hist, out.width="75%"-----------------------------------------------
hist(simMVRM[which(simMVRM$time == 1), ]$Y1, main = "Y1 at time 1", xlab = "Y1")
## ----DImulti_modelSTR---------------------------------------------------------
modelSTR <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"),
unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "STR", method = "ML")
## ----DImulti_modelSTR_print---------------------------------------------------
print(modelSTR)
## ----DImulti_modelID----------------------------------------------------------
modelID <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"),
unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "ID", method = "ML")
## ----DImulti_modelID_tTable---------------------------------------------------
summary(modelID)$tTable
## ----DImulti_STR_ID_LRT-------------------------------------------------------
anova(modelSTR, modelID)
## ----DImulti_modelAV----------------------------------------------------------
modelAV <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"),
unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "AV", method = "ML")
coef(modelAV)
anova(modelID, modelAV)
## ----DImulti_modelAV_theta----------------------------------------------------
modelAV_theta <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"),
unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "AV", method = "ML",
estimate_theta = TRUE)
thetaVals <- modelAV_theta$theta
thetaVals
AICc(modelAV)
AICc(modelAV_theta)
## ----DImulti_modelADD---------------------------------------------------------
modelADD <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"),
unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "ADD", method = "ML",
theta = thetaVals)
modelADD$coefficients
anova(modelAV_theta, modelADD)
## ----DImulti_modelADD_treat, eval=FALSE---------------------------------------
# modelAV_treat1 <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"),
# unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "ADD", method = "ML",
# theta = thetaVals, extra_fixed = ~treat)
#
# modelAV_treat2 <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"),
# unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "ADD", method = "ML",
# theta = thetaVals, extra_fixed = ~1:treat)
## ----DImulti_modelAV_ID-------------------------------------------------------
modelAV_ID <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"),
unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "AV", method = "ML",
theta = thetaVals, ID = c("Group1", "Group1", "Group2", "Group2"))
summary(modelAV_ID)$tTable
anova(modelAV_ID, modelAV)
## ----DImulti_modelFinal-------------------------------------------------------
modelFinal <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"),
unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "AV", method = "REML",
theta = thetaVals)
summary(modelFinal)
## ----DImulti_modelFinal_tTable------------------------------------------------
summary(modelFinal)$tTable
## ----DImulti_modelFinal_varCovs, eval=FALSE-----------------------------------
# nlme::getVarCov(modelFinal)
#
# modelFinal$vcov
## ----DImulti_modelFinal_getVarCov, echo=FALSE---------------------------------
nlme::getVarCov(modelFinal)
## ----DImulti_modelFinal_predict-----------------------------------------------
comms <- simMVRM[c(1, 4, 7, 10, 21), ]
print(comms)
commPred <- predict(modelFinal, newdata = comms)
commPred
## ----DImulti_modelFinal_grouped, out.width="75%"------------------------------
ggplot2::ggplot(commPred, ggplot2::aes(fill=Ytype, y=Yvalue, x=plot)) +
ggplot2::geom_bar(position="dodge", stat="identity")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.