Description Usage Arguments Details Value Examples
Compute exact LR exceedance probabilities
1 |
t |
numeric (vector), threshold |
dists |
list of per-locus probability distributions of a likelihood ratio |
For a combined likelihood ratio
LR=LR_1 LR_2 \times LR_m,
define q_{t|H} as the probability that the LR exceeds t under hypothesis H, i.e.:
q_{t|H} := P(LR>t|H).
The hypothesis H can be H_p, H_d or even another hypothesis. The current function computes q_{t|H} by brute force.
numeric (vector) with estimated probabilities
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | data(freqsNLsgmplus)
x <- sample.profiles(N = 1, freqsNLsgmplus)
# dist of PI for true parent/offspring pairs
hp <- ki.dist(x = x, hyp.1="PO",hyp.2="UN",hyp.true="PO",freqs.ki=freqsNLsgmplus)
# dist of PI for unrelated pairs
hd <- ki.dist(x = x, hyp.1="PO",hyp.2="UN",hyp.true="UN",freqs.ki=freqsNLsgmplus)
set.seed(100)
# estimate P(PI>1e4) for true PO
sim.q(t=1e4,dists=hp)
# estimate P(PI>1e4) for unrelated pairs
sim.q(t=1e4,dists=hd) # small probability, so no samples exceed t=1e6
# importance sampling can estimate the small probability reliably
# by sampling from H_p and weighting the samples appropriately
sim.q(t=1e4,dists=hd,dists.sample=hp)
# compare to exact values
exact.q(t = 1e4, dists=hp)
exact.q(t = 1e4, dists=hd)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.