plot.Surface_Cluster_Parameters | R Documentation |
Plot information about a clustering-based surface estimation parameter selection object.
## S3 method for class 'Surface_Cluster_Parameters'
plot(x, ...)
x |
A clustering-based surface estimation parameter selection object. |
... |
Further arguments passed to or from other methods. |
Plot some information about a clustering-based surface estimation parameter selection object. In particular, it plots the cross-validation (no blur) or modified cross-validation (there is blur involved) scores against the specified bandwidth values.
A plot of (modified) cross-validation scores is produced.
Yicheng Kang
Kang, Y., Mukherjee, P.S. and Qiu, P. (2018) "Efficient Blind Image Deblurring Using Nonparametric Regression and Local Pixel Clustering", Technometrics, 60(4), 522 – 531, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00401706.2017.1415975")}.
Qiu, P. (2009) "Jump-Preserving Surface Reconstruction from Noisy Data", Annals of the Institute of Statistical Mathematics, 61, 715 – 751, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10463-007-0166-9")}.
surfaceCluster_bandwidth
, print.Surface_Cluster_Parameters
,
summary.Surface_Cluster_Parameters
data(brain)
bandwidth_select <- surfaceCluster_bandwidth(image = brain,
bandwidths = c(3:4), sig.level = .9995, blur = FALSE)
plot(bandwidth_select)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.