View source: R/sync.trend.plot.R
sync.trend.plot | R Documentation |
The function creates a line chart showing temporal trends of spatial synchrony from data.frame
of the type as produced by sync.trend
.
sync.trend.plot (sync.trend.data)
sync.trend.data |
a |
The function makes a line chart showing synchrony trends across years from a data.frame produced by sync.trend
. Within- or between- group synchrony and SE are indicated for a selected time window. If synchrony is defined using using null.mod = TRUE
(sync.trend
) only general synchrony is ploted. If synchrony is defined using using null.mod = FALSE
(sync.trend
) different synchronies for each group variable (varGroup
) are fitted with different colours for each stratum.
Line chart
Josu G. Alday, Tatiana A. Shestakova, Victor Resco de Dios, Jordi Voltas
## Calculate temporal trends of synchrony for conifersIP data: data(conifersIP) ##Fit the null.model temporal trend (mBE) using taxonomic grouping criteria (i.e. Species) mBE.trend <- sync.trend(TRW ~ Code, varTime = "Year", varGroup = "Species", data = conifersIP, null.mod = TRUE, window = 30, lag = 5) mBE.trend# it returns a data.frame sync.trend.plot(mBE.trend)# Broad evaluation synchrony linechart ## Not run: ##Fit homoscedastic within-group trends (mBE, mNE, mCS, mUN) # using geographic grouping criteria (i.e. Region) geo.trend <- sync.trend(TRW ~ Code, varTime = "Year", varGroup = "Region", data = conifersIP, window = 30, lag = 5, null.mod = FALSE, homoscedastic = TRUE) geo.trend#a data.frame with varGroup synchrony for each time window. sync.trend.plot(geo.trend)#Selected heteroscedastic between-group trends by AIC ##Fit heteroscedastic betwen-group trends (mBE, mHeNE, mHeCS, mHeUN) # using geographic grouping criteria (i.e. Region) and AICc geo.het.trend <- sync.trend(TRW ~ Code, varTime = "Year", varGroup = "Region", data = conifersIP, window = 30, lag = 5, null.mod = FALSE, selection.method = c("AICc"), homoscedastic = FALSE, between.group = TRUE) geo.het.trend sync.trend.plot(geo.het.trend)#Selected heteroscedastic between-group trends by AICc ##Fit homoscedastic and heteroscedastic within-group trends # using taxonomic grouping criteria (i.e. Species) and BIC geo.tot.trend <- sync.trend(TRW ~ Code, varTime = "Year", varGroup = "Species", data = conifersIP, window = 30, lag = 5, selection.method = c("BIC"), null.mod = F, all.mod = TRUE) geo.tot.trend #Selected homoscedastic and heteroscedastic within-group trends by BIC sync.trend.plot(geo.tot.trend) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.