Description Usage Arguments Value Author(s) References See Also Examples
Update a km
object when one or many new
observations are added. Many, but not all, fields of the
km
object need to be recalculated when new observations are added.
It is also possible to modify the k last (existing) observations.
1 2 3 4 |
object |
Kriging model of |
newX |
Matrix with |
newy |
Matrix with one column and r rows corresponding to the r
responses at the r locations |
newX.alreadyExist |
Boolean: indicate whether the locations |
cov.reestim |
Should the covariance parameters
of the |
trend.reestim |
Should the trend parameters be re-estimated? |
nugget.reestim |
Should the nugget effect be re-estimated? |
newnoise.var |
Vector containing the noise variance at each new observations. |
kmcontrol |
Optional list representing the control variables for
the re-estimation of the kriging model once new points are
sampled. The items are the same as in |
newF |
Optional matrix containing the value of the trend at the new locations. Setting this argument avoids a call to an expensive function. |
... |
Further arguments |
Updated km object
Clement Chevalier (IMSV, Switzerland, and IRSN, France)
Bect J., Ginsbourger D., Li L., Picheny V., Vazquez E. (2010), Sequential design of computer experiments for the estimation of a probability of failure, Statistics and Computing, pp.1-21, 2011, https://arxiv.org/abs/1009.5177
Chevalier C., Bect J., Ginsbourger D., Vazquez E., Picheny V., Richet Y. (2011), Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set, https://hal.archives-ouvertes.fr/hal-00641108/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | set.seed(8)
N <- 9 # number of observations
testfun <- branin
# a 9 points initial design
design <- expand.grid(x1=seq(0,1,length=3), x2=seq(0,1,length=3))
response <- testfun(design)
# km object with matern3_2 covariance
# params estimated by ML from the observations
model <- km(formula = ~., design = design,
response = response, covtype = "matern3_2")
model@covariance
newX <- matrix(c(0.4,0.5), ncol = 2) #the point that we are going to add in the km object
newy <- testfun(newX)
newmodel <- update(object = model, newX = newX, newy = newy, cov.reestim = TRUE)
newmodel@covariance
|
optimisation start
------------------
* estimation method : MLE
* optimisation method : BFGS
* analytical gradient : used
* trend model : ~x1 + x2
* covariance model :
- type : matern3_2
- nugget : NO
- parameters lower bounds : 1e-10 1e-10
- parameters upper bounds : 2 2
- best initial criterion value(s) : -53.40287
N = 2, M = 5 machine precision = 2.22045e-16
At X0, 0 variables are exactly at the bounds
At iterate 0 f= 53.403 |proj g|= 0.52892
At iterate 1 f = 53.172 |proj g|= 1.4901e-137
Bad direction in the line search;
refresh the lbfgs memory and restart the iteration.
Derivative >= 0, backtracking line search impossible.final value 53.171961
stopped after 1 iterations
Covar. type : matern3_2
Covar. coeff.:
Estimate
theta(x1) 0.0026
theta(x2) 0.0000
Variance estimate: 7927.668
optimisation start
------------------
* estimation method : MLE
* optimisation method : BFGS
* analytical gradient : used
* trend model : ~x1 + x2
* covariance model :
- type : matern3_2
- nugget : NO
- parameters lower bounds : 1e-10 1e-10
- parameters upper bounds : 2 2
- best initial criterion value(s) : -58.13399
N = 2, M = 5 machine precision = 2.22045e-16
At X0, 0 variables are exactly at the bounds
At iterate 0 f= 58.134 |proj g|= 0.75161
At iterate 1 f = 58.119 |proj g|= 0.19813
At iterate 2 f = 58.118 |proj g|= 0.013799
At iterate 3 f = 58.118 |proj g|= 0.0038491
At iterate 4 f = 58.118 |proj g|= 0.25503
At iterate 5 f = 58.118 |proj g|= 0.26064
At iterate 6 f = 58.117 |proj g|= 0.30168
At iterate 7 f = 58.117 |proj g|= 0.36107
At iterate 8 f = 58.116 |proj g|= 0.39899
At iterate 9 f = 58.113 |proj g|= 0.2798
At iterate 10 f = 58.111 |proj g|= 0.019397
At iterate 11 f = 58.111 |proj g|= 0.00916
At iterate 12 f = 58.111 |proj g|= 0.00048468
At iterate 13 f = 58.111 |proj g|= 1.1392e-05
iterations 13
function evaluations 25
segments explored during Cauchy searches 13
BFGS updates skipped 0
active bounds at final generalized Cauchy point 0
norm of the final projected gradient 1.13923e-05
final function value 58.1106
F = 58.1106
final value 58.110562
converged
Covar. type : matern3_2
Covar. coeff.:
Estimate
theta(x1) 0.3343
theta(x2) 0.2875
Variance estimate: 8424.715
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.