Nothing
#' Analytical gradient of the Kriging quantile of level beta
#'
#' Computes the gradient of the Kriging quantile of level beta at the current
#' location. Only available for Universal Kriging with constant trend
#' (Ordinary Kriging).
#'
#'
#' @param x a vector representing the input for which one wishes to calculate
#' kriging.quantile.grad.
#' @param model an object of class \code{\link[DiceKriging]{km}}.
#' @param beta A quantile level (between 0 and 1)
#' @param type Kriging type: "SK" or "UK"
#' @param envir environment for inheriting intermediate calculations from
#' \code{"kriging.quantile"}
#' @return The gradient of the Kriging mean predictor with respect to x. %
#' Returns 0 at design points (where the gradient does not exist).
#' @author Victor Picheny
#'
#' David Ginsbourger
#' @seealso \code{\link{EI.grad}}
#' @references
#'
#' O. Roustant, D. Ginsbourger, Y. Deville, \emph{DiceKriging, DiceOptim: Two
#' R packages for the analysis of computer experiments by kriging-based
#' metamodeling and optimization}, J. Stat. Soft., 2010.
#' \url{https://www.jstatsoft.org/article/view/v051i01}
#'
#' D. Ginsbourger (2009), \emph{Multiples metamodeles pour l'approximation et
#' l'optimisation de fonctions numeriques multivariables}, Ph.D. thesis, Ecole
#' Nationale Superieure des Mines de Saint-Etienne, 2009.
#' @keywords models optimize
#' @examples
#'
#' ##########################################################################
#' ### KRIGING QUANTILE SURFACE AND ITS GRADIENT FOR ####
#' ### THE BRANIN FUNCTION KNOWN AT A 12-POINT LATIN HYPERCUBE DESIGN ####
#' ##########################################################################
#' set.seed(421)
#'
#' # Set test problem parameters
#' doe.size <- 12
#' dim <- 2
#' test.function <- get("branin2")
#' lower <- rep(0,1,dim)
#' upper <- rep(1,1,dim)
#' noise.var <- 0.2
#'
#' # Generate DOE and response
#' doe <- as.data.frame(matrix(runif(doe.size*dim),doe.size))
#' y.tilde <- rep(0, 1, doe.size)
#' for (i in 1:doe.size) {
#' y.tilde[i] <- test.function(doe[i,]) + sqrt(noise.var)*rnorm(n=1)
#' }
#' y.tilde <- as.numeric(y.tilde)
#'
#' # Create kriging model
#' model <- km(y~1, design=doe, response=data.frame(y=y.tilde),
#' covtype="gauss", noise.var=rep(noise.var,1,doe.size),
#' lower=rep(.1,dim), upper=rep(1,dim), control=list(trace=FALSE))
#'
#' # Compute actual function and criterion on a grid
#' n.grid <- 9 # Change to 21 for a nicer picture
#' x.grid <- y.grid <- seq(0,1,length=n.grid)
#' design.grid <- expand.grid(x.grid, y.grid)
#' nt <- nrow(design.grid)
#'
#' crit.grid <- apply(design.grid, 1, kriging.quantile, model=model, beta=.1)
#' crit.grad <- t(apply(design.grid, 1, kriging.quantile.grad, model=model, beta=.1))
#'
#' z.grid <- matrix(crit.grid, n.grid, n.grid)
#' contour(x.grid,y.grid, z.grid, 30)
#' title("kriging.quantile and its gradient")
#' points(model@@X[,1],model@@X[,2],pch=17,col="blue")
#'
#' for (i in 1:nt)
#' {
#' x <- design.grid[i,]
#' arrows(x$Var1,x$Var2, x$Var1+crit.grad[i,1]*.01,x$Var2+crit.grad[i,2]*.01,
#' length=0.04,code=2,col="orange",lwd=2)
#' }
#'
#' @export
kriging.quantile.grad <- function(x, model, beta=0.1, type="UK", envir=NULL)
{
########## Convert x in proper format(s) ###
d <- length(x)
if (d != model@d){ stop("x does not have the right size") }
newdata.num <- as.numeric(x)
newdata <- data.frame(t(newdata.num))
colnames(newdata) = colnames(model@X)
T <- model@T
X <- model@X
z <- model@z
u <- model@M
covStruct <- model@covariance
if (is.null(envir))
{ predx <- predict(object=model, newdata=newdata, type=type, checkNames = FALSE)
mk <- predx$mean
sk <- predx$sd
c <- predx$c
v <- predx$Tinv.c
} else
{ toget <- matrix(c("mk", "sk", "c", "Tinv.c"),1,4)
apply(toget, 2, get, envir=envir)
c <- envir$c
v <- envir$Tinv.c
mk <- envir$mk
sk <- envir$sk
}
F.newdata <- model.matrix(model@trend.formula, data=newdata)
# Compute derivatives of the covariance and trend functions
dc <- covVector.dx(x=newdata.num, X=X, object=covStruct, c=c)
f.deltax <- trend.deltax(x=newdata.num, model=model)
# Compute gradients of the kriging mean and variance
W <- backsolve(t(T), dc, upper.tri=FALSE)
mk.grad <- t(W)%*%z + t(model@trend.coef%*%f.deltax)
if (sk < sqrt(model@covariance@sd2)/1e6)
{ sk.grad <- 0
} else
{
if (type=="UK")
{ tuuinv <- solve(t(u)%*%u)
sk2.grad <- t( -2*t(v)%*%W +
2*(F.newdata - t(v)%*%u )%*% tuuinv %*%
(f.deltax - t(t(W)%*%u) ))
} else { sk2.grad <- t( -2*t(v)%*%W)}
sk.grad <- sk2.grad / (2*sk)
}
return(quantile.grad <- mk.grad + qnorm(beta)*sk.grad)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.