DIKUM | R Documentation |
The function DIKUM()
defines the discrete Inverted Kumaraswamy distribution, a two parameter
distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
.
DIKUM(mu.link = "log", sigma.link = "log")
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "log" link as the default for the sigma. |
The discrete Inverted Kumaraswamy distribution with parameters \mu
and \sigma
has a support 0, 1, 2, ... and density given by
f(x | \mu, \sigma) = (1-(2+x)^{-\mu})^{\sigma}-(1-(1+x)^{-\mu})^{\sigma}
with \mu > 0
and \sigma > 0
.
Note: in this implementation we changed the original parameters \alpha
and \beta
for \mu
and \sigma
respectively, we did it to implement this distribution within gamlss framework.
Returns a gamlss.family
object which can be used
to fit a discrete Inverted Kumaraswamy distribution
in the gamlss()
function.
Daniel Felipe Villa Rengifo, dvilla@unal.edu.co
EL_Helbawy2022DiscreteDists
dDIKUM.
# Example 1
# Generating some random values with
# known mu and sigma
set.seed(150)
y <- rDIKUM(1000, mu=1, sigma=5)
# Fitting the model
library(gamlss)
mod1 <- gamlss(y ~ 1, sigma.fo = ~1, family=DIKUM,
control = gamlss.control(n.cyc=500, trace=FALSE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
exp(coef(mod1, what='mu'))
exp(coef(mod1, what='sigma'))
# Example 2
# Generating random values under some model
library(gamlss)
# A function to simulate a data set with Y ~ DIKUM
gendat <- function(n) {
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(1.21 - 3 * x1) # 0.75 approximately
sigma <- exp(1.26 - 2 * x2) # 1.30 approximately
y <- rDIKUM(n=n, mu=mu, sigma=sigma)
data.frame(y=y, x1=x1, x2=x2)
}
dat <- gendat(n=150)
# Fitting the model
mod2 <- gamlss(y ~ x1, sigma.fo = ~x2, family = "DIKUM", data=dat,
control=gamlss.control(n.cyc=500, trace=FALSE))
summary(mod2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.