GGEO | R Documentation |
The function GGEO()
defines the Generalized Geometric distribution,
a two parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
.
GGEO(mu.link = "logit", sigma.link = "log")
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "logit" link as the default for the sigma. Other links are "probit" and "cloglog"'(complementary log-log) |
The GGEO distribution with parameters \mu
and \sigma
has a support 0, 1, 2, ... and mass function given by
f(x | \mu, \sigma) = \frac{\sigma \mu^x (1-\mu)}{(1-(1-\sigma) \mu^{x+1})(1-(1-\sigma) \mu^{x})}
with 0 < \mu < 1
and \sigma > 0
. If \sigma=1
, the GGEO distribution
reduces to the geometric distribution with success probability 1-\mu
.
Returns a gamlss.family
object which can be used
to fit a GGEO distribution
in the gamlss()
function.
Valentina Hurtado SepĂșlveda, vhurtados@unal.edu.co
gomez2010DiscreteDists
dGGEO.
# Example 1
# Generating some random values with
# known mu and sigma
set.seed(123)
y <- rGGEO(n=200, mu=0.95, sigma=1.5)
# Fitting the model
library(gamlss)
mod1 <- gamlss(y~1, family=GGEO,
control=gamlss.control(n.cyc=500, trace=FALSE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
inv_logit <- function(x) 1/(1 + exp(-x))
inv_logit(coef(mod1, what="mu"))
exp(coef(mod1, what="sigma"))
# Example 2
# Generating random values under some model
# A function to simulate a data set with Y ~ GGEO
gendat <- function(n) {
x1 <- runif(n)
x2 <- runif(n)
mu <- inv_logit(1.7 - 2.8*x1)
sigma <- exp(0.73 + 1*x2)
y <- rGGEO(n=n, mu=mu, sigma=sigma)
data.frame(y=y, x1=x1, x2=x2)
}
set.seed(78353)
datos <- gendat(n=100)
mod2 <- gamlss(y~x1, sigma.fo=~x2, family=GGEO, data=datos,
control=gamlss.control(n.cyc=500, trace=FALSE))
summary(mod2)
# Example 3
# Number of accidents to 647 women working on H. E. Shells
# for 5 weeks. Taken from Gomez-Deniz (2010) page 411.
y <- rep(x=0:5, times=c(447, 132, 42, 21, 3, 2))
mod3 <- gamlss(y~1, family=GGEO,
control=gamlss.control(n.cyc=500, trace=TRUE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
inv_logit <- function(x) 1/(1 + exp(-x))
inv_logit(coef(mod3, what="mu"))
exp(coef(mod3, what="sigma"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.