HYPERPO | R Documentation |
The function HYPERPO()
defines the hyper Poisson distribution, a two parameter
distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
.
HYPERPO(mu.link = "log", sigma.link = "log")
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "log" link as the default for the sigma. |
The hyper-Poisson distribution with parameters \mu
and \sigma
has a support 0, 1, 2, ... and density given by
f(x | \mu, \sigma) = \frac{\mu^x}{_1F_1(1;\mu;\sigma)}\frac{\Gamma(\sigma)}{\Gamma(x+\sigma)}
where the function _1F_1(a;c;z)
is defined as
_1F_1(a;c;z) = \sum_{r=0}^{\infty}\frac{(a)_r}{(c)_r}\frac{z^r}{r!}
and (a)_r = \frac{\gamma(a+r)}{\gamma(a)}
for a>0
and r
positive integer.
Note: in this implementation we changed the original parameters \lambda
and \gamma
for \mu
and \sigma
respectively, we did it to implement this distribution within gamlss framework.
Returns a gamlss.family
object which can be used
to fit a hyper-Poisson distribution
in the gamlss()
function.
Freddy Hernandez, fhernanb@unal.edu.co
saez2013hyperpoDiscreteDists
dHYPERPO.
# Example 1
# Generating some random values with
# known mu and sigma
set.seed(1234)
y <- rHYPERPO(n=200, mu=10, sigma=1.5)
# Fitting the model
library(gamlss)
mod1 <- gamlss(y~1, sigma.fo=~1, family=HYPERPO,
control=gamlss.control(n.cyc=500, trace=FALSE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
exp(coef(mod1, what="mu"))
exp(coef(mod1, what="sigma"))
# Example 2
# Generating random values under some model
# A function to simulate a data set with Y ~ HYPERPO
gendat <- function(n) {
x1 <- runif(n)
x2 <- runif(n)
mu <- exp(1.21 - 3 * x1) # 0.75 approximately
sigma <- exp(1.26 - 2 * x2) # 1.30 approximately
y <- rHYPERPO(n=n, mu=mu, sigma=sigma)
data.frame(y=y, x1=x1, x2=x2)
}
set.seed(1235)
datos <- gendat(n=150)
mod2 <- NULL
mod2 <- gamlss(y~x1, sigma.fo=~x2, family=HYPERPO, data=datos,
control=gamlss.control(n.cyc=500, trace=FALSE))
summary(mod2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.